首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
The atomic and electronic structures of T1 and In on Si(111) surfaces are investigated using the firstprinciples total energy calculations. Total energy optimizations show that the energetically favored structure is 1/3 ML T1 adsorbed at the T4 sites on Si(111) surfaces. The adsorption energy difference of one T1 adatom between (√3 × √3) and (1 × 1) is less than that of each In adatom. The DOS indicates that TI 6p and Si 3p electrons play a very important role in the formation of the surface states. It is concluded that the bonding of TI adatoms on Si(111) surfaces is mainly polar covalent, which is weaker than that of In on Si(111). So T1 atom is more easy to be migrated than In atom in the same external electric field and the structures of T1 on Si(111) is prone to switch between (√3 × √3) and (1 × 1).  相似文献   

2.
We present first-principles calculations of the formation energy of different native defects and their complexes in wurtzite InN using density-functional theory and the pseudopotential plane-wave method. Our calculations are aimed in the three cases: N/In = 1, N/In 〉 1 (N-rich), and N/In 〈 1 (In-rich). Our results indicate that the antisite defect has the lowest formation energy under N/In = 1. The formation energy of nitrogen interstitial (nitrogen vacancy) defect is significantly low under the N-rich (In-rich) condition. Thus the antisite defect is an important defect if N/In = 1, and the nitrogen interstitial (nitrogen vacancy) defect is a vital defect under the N-rich (In-rich) condition. The atomic site relaxation around the nitrogen interstitial and vacancy is investigated. Our calculations show that the nitrogen vacancy cannot be observed although it is one of the most important defects in InN. Our results are confirmed by experiments.  相似文献   

3.
The abundant generalized dromion structures for the (2+1)-dimensional KdV equation are obtained using the homogeneous balance method. We give not only the general curve soliton which is finite on a curved line and localized apart from the curve, find but also the dromion solutions which can be driven by two perpendicular line soliton and by two non-perpendicular line soliton and by one line soliton and one curve line soliton. Various types of multi-dromion solutions can be constituted by selecting different arbitrary functions of y. The (1+N) dromion obtained by Radha et al.[3] is only a very special case of our results.  相似文献   

4.
The influence of vacancy defect on the doping of silicon nanowires is systematically studied by the first-principles calculations. The atomic structures and electronic properties of vacancies and vacancy–boron(vacancy–phosphor) complexes in H-passivated silicon nanowire with a diameter of 2.3 nm are explored. The results of geometry optimization indicate that a central vacancy can exist stably, while the vacancy at the edge of the nanowire undergoes a local surface reconstruction, which results in the extradition of the vacancy out of the nanowire. Total-energy calculations indicate that the central vacancy tends to form a vacancy–dopant defect pair. Further analysis shows that n-type doping efficiency is strongly inhibited by the unintentional vacancy defect. In contrast, the vacancy defect has little effect on p-type doping.Our results suggest that the vacancy defect should be avoided during the growth and the fabrication of devices.  相似文献   

5.
We study the structures of Ag adatom clusters supported on the metal Ag(111) surface using the genetic algorithm (GA). The atomic interactions are modelled by the surface-embedded-atom method. The lowest-energy structures of adatom clusters with sizes n=3-20 are obtained, in which n=7, 10, 12, 14, 16, 19 are the magic numbers. Furthermore, we give a series of structures with energies close to the lowest energy (the lower-energy isomers), and the structure features are studied in detail. Except for some magic clusters and small clusters, every configuration of adatom clusters generally has two distinct adsorption ways, so the isomers always appear in pairs.  相似文献   

6.
Quantum well intermixing (QWI) by the impurity-free vacancy disordering (IFVD) technique is an important and effective approach for the monolithic integration of optoelectronic devices based on InGaAs/InP quantum well structures. We experimentally investigate the influence of the capping layer SiO2 and Si3N4 on the QWI by IFVD. The results show that for all the samples with three-types differently doped (P, N and I) top InP layers, Si3N4 can always induce a larger photoluminescence blueshift than SiO2 in the IFVD QWI process, which attributes more to the group III and V vacancies point defects created in the interface of Si3N4-InP than that of SiO2-InP, proved by the SIMS measurements. The inherent mechanisms for explaining these properties are further discussed.  相似文献   

7.
ITER blanket design has progressed significantly since 2001, which resulted in a reduction in cost and an increase in performance with respect to FDR 2001. One of the most important improvements is the new coolant flow configuration in the shield block ( SB ) . In the current design TM, the cooling circuit in the SB is a matrix of radial holes which are arranged in eight poloidal rows. The rows are fed in parallel by front headers and back drilled collectors, and merge in four couples through the front header. These four couples of rows are linked in series by transverse holes. In the current design, a special shape of flow driver is mounted inside the radial hole, and coolant flows through clearance between the driver and drilled radial hole, which allows achieving a high coolant velocity,  相似文献   

8.
Ge nano-belts with large tensile strain are considered as one of the promising materials for high carrier mobility metal- oxide-semiconductor transistors and efficient photonic devices. In this paper, we design the Ge nano-belts on an insulator surrounded by Si3N4 or SiO? for improving their tensile strain and simulate the strain profiles by using the finite difference time domain (FDTD) method. The width and thickness parameters of Ge nano-belts on an insulator, which have great effects on the strain profile, are optimized. A large uniaxial tensile strain of 1.16% in 50-nm width and 12-nm thickness Ge nano-belts with the sidewalls protected by Si3N4 is achieved after thermal treatments, which would significantly tailor the band gap structures of Ge-nanobelts to realize the high performance devices.  相似文献   

9.
贾仁需  张玉明  张义门 《中国物理 B》2010,19(10):107105-107105
First, electronic structures of perfect wurtzite 4H-SiC were calculated by using first-principle ultra-soft pseudo- potential approach of the plane wave based on the density functional theory; and the structure changes, band structures, and density of states were studied. Then the defect energy level of carbon vacancy in band gap was examined by substituting the carbon in 4H-SiC with carbon vacancy. The calculated results indicate the new defect energy level generated by the carbon vacancy, and its location in the band gap in 4H-SiC, which has the character of deep acceptor. A proper explanation for green luminescence in 4H-SiC is given according to the calculated results which are in good agreement with our measurement results.  相似文献   

10.
We report fabrication of low-dimensional structures in air by a pulsed laser on SiGe alloy samples in which different oxide structures are formed by laser irradiation and annealing treatment. The micro-structures on SiGe are more complex than those on Si. A series of photolumineseence (PL) emission is observed due to various trap states at the SiGe-SiO2 interface formed under different preparing conditions. The peak centre of PL emission exhibits red=shift from Si to SiGe because of narrower gap. A model for explaining the PL emission is proposed in which the trap states of the interface between some oxide and SiGe play an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号