首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new metal-free synthetic approach to functionalized indenes is documented. The use of commercially available graphene oxide (GO) allowed the direct access to indenyl cores (yield up to 80 %) via intramolecular Friedel-Crafts-type allylic alkylations with readily available Morita-Baylis-Hillman alcohols. Combined experimental and spectroscopic investigations contributed to shed light on the reaction mechanism dealing with a nanostructured carbon material-based C−C bond forming reaction.  相似文献   

2.
A high-yielding exfoliation of graphene at high concentrations in aqueous solutions is critical for both fundamental study and future applications. Herein, we demonstrate the formation of stable aqueous dispersions of pristine graphene by using the surfactant sodium taurodeoxycholate under tip sonication at concentrations of up to 7.1 mg mL(-1). TEM showed that about 8% of the graphene flakes consisted of monolayers and 82% of the flakes consisted of less than five layers. The dispersions were stable regardless of freezing (-20 °C) or heat treatment (80 °C) for 24 h. The concentration could be significantly improved to about 12 mg mL(-1) by vacuum-evaporation of the dispersions at ambient temperature. The as-prepared graphene dispersions were readily cast into conductive films and were also processed to prepare Pt/graphene nanocomposites that were used as highly active electrocatalysts for the oxygen-reduction reaction.  相似文献   

3.
The epitaxial growth of graphene on a singular carbon face of silicon carbide is simulated by semiempirical quantum chemical methods. It is shown that the main regularities of the growth of graphene on such a face, i.e., the sequence of surface reconstructions with a short spatial period (2 × 2) → (3 × 3) → graphene, are exhibited naturally during the analysis of various paths of graphene assembly and seeking the most probable path.  相似文献   

4.
A high‐yielding exfoliation of graphene at high concentrations in aqueous solutions is critical for both fundamental study and future applications. Herein, we demonstrate the formation of stable aqueous dispersions of pristine graphene by using the surfactant sodium taurodeoxycholate under tip sonication at concentrations of up to 7.1 mg mL?1. TEM showed that about 8 % of the graphene flakes consisted of monolayers and 82 % of the flakes consisted of less than five layers. The dispersions were stable regardless of freezing (?20 °C) or heat treatment (80 °C) for 24 h. The concentration could be significantly improved to about 12 mg mL?1 by vacuum‐evaporation of the dispersions at ambient temperature. The as‐prepared graphene dispersions were readily cast into conductive films and were also processed to prepare Pt/graphene nanocomposites that were used as highly active electrocatalysts for the oxygen‐reduction reaction.  相似文献   

5.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

6.
《化学:亚洲杂志》2017,12(19):2524-2527
The direct C−H trifluoromethylation of arenes catalyzed by graphene oxide (GO) under safe conditions is described. This strategy is metal‐free, initiator‐free, safe, and scalable. It employs a readily available CF3 source and the reaction can be easily controlled to obtain a mono‐trifluorinated product. This method opens a new avenue for GO‐catalyzed chemistry.  相似文献   

7.
In this paper, we report a facile solvothermal route capable of aligning MnOOH nanocrystals on graphene. X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations indicate that the exfoliated graphene sheets are decorated randomly by MnOOH nanocrystals, forming well-dispersed graphene-MnOOH nanocomposites. Dissolution-crystallization and oriented attachment are speculated to be the vital mechanisms in the synthetic process. The attachment of additives, such as MnOOH nanoparticles, are found to be beneficial for the exfoliation of GO as well as preventing the restack of graphene sheets. Moreover, cyclic voltammetry (CV) analyses suggest that the electrochemical reversibility is improved by anchoring MnOOH on graphene. Notably, the as-fabricated nanocomposites reveal unusual catalytic performance for the thermal decomposition of ammonium perchlorate (AP) due to the concerted effects of graphene and MnOOH. This template-free method is easy to reproduce, and the process proceeds at a low temperature and can be readily extended to prepare other graphene-based nanocomposites.  相似文献   

8.
We investigate the electrochemical properties of CVD grown graphene towards the detection of various biologically prevalent analytes including l-ascorbic acid (AA), dopamine hydrochloride (DA), β-nicotinamide adenine dinucleotide (NADH), uric acid (UA) and epinephrine (EP). We find that the observed electrochemical response of the CVD-graphene towards these select analytes does not originate from the graphene, however, from various other contributions including the presence of 'graphitic islands' on the surface of the CVD-graphene which dominate its electrochemistry. In the systems studied within, it appears at best, CVD-graphene acts akin to that of an edge plane pyrolytic graphite (EPPG) electrode constructed from highly ordered pyrolytic graphite. However, in other cases, the response of the CVD-graphene is worse than that of an EPPG electrode, which is likely due to the low O/C ratio.  相似文献   

9.
It is well-known that chemical functionalization of graphene has the great significance.We report the development of a new synthesis method of chloro-functionalized reduced graphene oxide(rGOCl).The rGOCl was prepared by radical reaction,and treatment of carboxyl graphene oxide(GOCOOH) with N-chlorosuccinimide(NCS) at 90℃ for 10 h under an atmosphere of nitrogen,using silver nitrate as catalyst.The morphologies and structures of the prepared materials were investigated by field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),Raman spectroscopy and the thermal gravimetric.Results indicated that the rGOCl can be readily obtained from graphene oxide(GO) in three steps.  相似文献   

10.
石墨烯条带的电子结构与性质:电场及长度效应   总被引:1,自引:0,他引:1  
在密度泛函理论(DFT)和含时密度泛函理论(TDDFT)的基础上对宽度上含有8个zigzag链的石墨烯条带(8-ZGNR)的基态和激发态的性质进行了理论研究,着重考察了条带长度及电场的影响.B3LYP杂化泛函的计算结果显示:在基态上,8-ZGNR的最低能量态并不具有磁性,随着长度的增加,才会显示出反铁磁的性质.静电场的加入使8-ZGNR显示出反铁磁性和半金属性.在激发态上,诱导电子会随着外激光脉冲的变化而发生移动和变化,但是相比而言,α自旋电子更容易被激发而产生较明显的诱导电子密度,而β自旋电子则更容易脱离外激光场的控制而产生非绝热现象.  相似文献   

11.
Sarakinos G  Corey EJ 《Organic letters》1999,1(11):1741-1744
[formula: see text] The enantiomerically pure hydroxy sulfones (+)- and (-)-2 have been prepared from 1,2-epoxycyclohexane by a simple and practical procedure. The acrylate esters of these alcohols undergo BCl3-catalyzed Diels-Alder reactions with a variety of dienes at -78 to -55 degrees C in CH2Cl2 or C7H8 with high dienophile face selectivity (Table 1). The chiral esters so formed are readily cleaved with recovery of the controllers (+)- or (-)-2. Esters of (+)- and (-)-2 can be converted to Z-potassium enolates and alkylated with high face selectivity.  相似文献   

12.
The fabrication of advanced graphene-based nanocomposites with high-performance polymers requires covalent modification of graphene with aromatic macromolecules. Herein, C−N coupling reactions between fluorinated graphene (FG) and aromatic polyamides containing the benzimidazole moiety are successfully achieved. The optimized conditions are presented based on the nucleophilic behavior of the C−N coupling reaction on graphene. Different from the C−N coupling reaction between two small aromatic molecules, the conformation of grafted aromatic polyamide after reaction changes from torsional to paralleled alignment on graphene with the molecular length increment. Non-covalent interactions between graphene and aromatic polyamides result in this conformational change owing to the extended π systems of graphene and aromatic polyamides, and the synergistic effect of covalent and non-covalent interactions is put forward. As a consequence, graphene dispersibility is greatly enhanced in the solution of aromatic polyamide.  相似文献   

13.
The nucleation of graphene on a transition metal surface, either on a terrace or near a step edge, is systematically explored using density functional theory calculations and applying the two-dimensional (2D) crystal nucleation theory. Careful optimization of the supported carbon clusters, C(N) (with size N ranging from 1 to 24), on the Ni(111) surface indicates a ground state structure transformation from a one-dimensional C chain to a 2D sp(2) C network at N ≈ 10-12. Furthermore, the crucial parameters controlling graphene growth on the metal surface, nucleation barrier, nucleus size, and nucleation rate on a terrace or near a step edge are calculated. In agreement with numerous experimental observations, our analysis shows that graphene nucleation near a metal step edge is superior to that on a terrace. On the basis of our analysis, we propose the use of graphene seeds to synthesize high-quality graphene in large area.  相似文献   

14.
Applications requiring pristine graphene derived from graphite demand a solution stabilization method that utilizes an easily removable media. Using a combination of molecular dynamics simulations and experimental techniques, we investigate the solublization/suspension of pristine graphene sheets by an equimolar mixture of benzene and hexafluorobenzene (C(6)H(6)/C(6)F(6)) that is known to form an ordered structure solidifying at 23.7 °C. Our simulations show that the graphene surface templates the self-assembly of the mixture into periodic layers extending up to 30 ? from both sides of the graphene sheet. The solvent structuring is driven by quadrupolar interactions and consists of stacks of alternating C(6)H(6)/C(6)F(6) molecules rising from the surface of the graphene. These stacks result in density oscillations with a period of about 3.4 ?. The high affinity of the 1:1 C(6)H(6)/C(6)F(6) mixture with graphene is consistent with observed hysteresis in Wilhelmy plate measurements using highly ordered pyrolytic graphite (HOPG). AFM, SEM, and TEM techniques verify the state of the suspended material after sonication. As an example of the utility of this mixture, graphene suspensions are freeze-dried at room temperature to produce a sponge-like morphology that reflects the structure of the graphene sheets in solution.  相似文献   

15.
The rational synthesis of Pt-based alloyed nanowires still remains a great challenge because of the different reduction potentials between Pt and another metal and the intrinsic feature of isotropic growth in face-centered cubic (fcc) structured Pt. In this work, PtPd alloyed nanowires with ultrahigh aspect ratio anchored on graphene (PtPd NWs/graphene) were synthesized by a facile solvothermal method without the use of any templates or surfactants. Due to the integration of ultralong PtPd nanowires and stable graphene support, PtPd NWs/graphene exhibited outstanding electrochemical activity toward methanol oxidation reaction (MOR) in comparison with pure Pt NWs/graphene and commercial Pt/C catalysts. Meanwhile, PtPd NWs/graphene had a much higher current density than Pt NWs/graphene and commercial Pt/C catalysts at a constant potential for 7200s in alkaline methanol solution. Moreover, after 1000 cycles of durability testing, PtPd NWs/graphene retained 89.2% of its initial mass activity, much superior to the 63.7% retained for commercial Pt/C.  相似文献   

16.
The syntheses of water-dispersible graphene via graphene oxide colloid dispersion and/or using functionalizations that disrupt the π-bond system of graphene or contaminate a graphene surface with big amounts of undesired impurities face some challenges in practical applications. Approaches based on thermally exfoliated graphene might be promising for many applications in which flat and perfect single-layer graphene is not mandatory and productivity is more than important. In this paper, for the first time, we report a simple and effective method to prepare water-dispersible graphene directly from thermally exfoliated graphene by covalent modification utilizing the inherent defects of graphene as active sites. That is, the epoxide groups on graphene were reacted with ethanolamine and then with n-butyl bromide to prepare the graphene decorated with cationic ammonium ions (alkylated graphene, AAG). Elemental analysis, thermogravimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrated that the reactions have proceeded as designed. The Raman spectra showed that the π-electronic system of sp 2-bonded carbons of the graphene was not damaged by the modification. The homogeneous colloidal dispersion of AAG in water remained stable for at least 6 months, showing that the wrinkled nature of the graphene as well as the electrostatic repulsion and steric hindrance between the graphene sheets caused by the bulky ammonium moieties on the graphene’s surface efficiently prevented the graphene from restacking and aggregating. The AAG dispersed stably in a poly(vinyl alcohol) matrix produced an extraordinarily high modulus increase of 236 % with just 1 phr (about 0.5 vol%) of AAG.  相似文献   

17.
The growth of carbon layers, defective graphene, and graphene by deposition of polycyclic aromatic hydrocarbons (PAHs) on Cu(111) is studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Two different PAHs are used as starting materials: the buckybowl pentaindenocorannulene (PIC) which contains pentagonal rings and planar coronene (CR). For both precursors, with increasing sample temperature during deposition, porous carbon aggregates (350 °C), dense carbon layers (400–450 °C), disordered defective graphene (500 °C–550 °C), and extended graphene (≥600 °C) are obtained. No significant differences for defective graphene grown from PIC and CR are observed. C 1s X-ray photoelectron spectra of PIC and CR derived samples grown at 350–550 °C exhibit a characteristic C−Cu low binding energy component. Preparation at ≥600 °C eliminates this C−Cu species and only C−C bonded carbon remains.  相似文献   

18.
Graphene is of considerable interest as a next-generation semiconductor material to serve as a possible substitute for silicon. For real device applications with complete circuits, effective n-type graphene field effect transistors (FETs) capable of operating even under atmospheric conditions are necessary. In this study, we investigated n-type reduced graphene oxide (rGO) FETs of photoactive metal oxides, such as TiO(2) and ZnO. These metal oxide doped FETs showed slight n-type electric properties without irradiation. Under UV light these photoactive materials readily generated electrons and holes, and the generated electrons easily transferred to graphene channels. As a result, the graphene FET showed strong n-type electric behavior and its drain current was increased. These n-doping effects showed saturation curves and slowly returned back to their original state in darkness. Finally, the n-type rGO FET was also highly stable in air due to the use of highly resistant metal oxides and robust graphene as a channel.  相似文献   

19.
This study demonstrates the capability of graphene as a spacer to form electrochemically functionalized multilayered nanostructures onto electrodes in a controllable manner through layer-by-layer (LBL) chemistry. Methylene green (MG) and positively charged methylimidazolium-functionalized multiwalled carbon nanotubes (MWNTs) were used as examples of electroactive species and electrochemically useful components for the assembly, respectively. By using graphene as the spacer, the multilayered nanostructures of graphene/MG and graphene/MWNT could be readily formed onto electrodes with the LBL method on the basis of the electrostatic and/or π-π interaction(s) between graphene and the electrochemically useful components. Scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis), and cyclic voltammetry (CV) were used to characterize the assembly processes, and the results revealed that nanostructure assembly was uniform and effective with graphene as the spacer. Electrochemical studies demonstrate that the assembled nanostructures possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH and could thus be used as electronic transducers for bioelectronic devices. This potential was further demonstrated by using an alcohol dehydrogenase-based electrochemical biosensor and glucose dehydrogenase-based glucose/O(2) biofuel cell as typical examples. This study offers a simple route to the controllable formation of graphene-based electrochemically functionalized nanostructures that can be used for the development of molecular bioelectronic devices such as biosensors and biofuel cells.  相似文献   

20.
A facile and scalable preparation of dispersion of isolated graphene in various organic solvents has been developed by combining between covalent and noncovalent functionalizations of the graphene surface. Covalently functionalized graphene (FRG) was prepared by the reaction of partially reduced graphene oxide with aryl diazonium salts, followed by the graphene oxide being completely reduced with hydrazine. The resulting FRG disperse readily in organic solvents such as N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidinone and the functionalization of graphene was characterized by Fourier transform infrared spectroscopy, thermogravimetric thermogram, X-ray photoelectron spectroscopy, and Raman spectroscopy. The hydrophobic surface of FRG was noncovalently wrapped with aromatic hexakis-dodecylhexa-peri-benzocorone (HBC) by simply mixing of dispersion of FRG in DMF with toluene solution of HBC. The complexation of FRG and HBC was monitored by viewing the absorption and fluorescence spectral changes. Atomic force microscopic images confirmed that graphene was covalently and noncovalently functionalized, while keeping a two-dimensional sheet shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号