首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermediate Hamiltonian Fock-space coupled-cluster (FS-CC) method with singles and doubles is applied to calculate vertical excitation energies (EEs) for some molecular systems. The calculations are performed for several small molecules, such as H2O, N2, and CO, and for larger systems, such as C2H4, C4H6, and C6H6. Due to the intermediate Hamiltonian formulation, which provides a robust computational scheme for solving the FS-CC equations, and the efficient factorization strategy, relatively large basis sets and model spaces are employed permitting a comparison of the calculated vertical EEs with the experimental data.  相似文献   

2.
The Hamiltonian describing rotational spectra of linear triatomic molecules has been derived by using the dynamical Lie algebra of symmetry group U1(4) U2(4). After rovibrational interactions being considered, the eigenvalue expression of the Hamiltonian has the form of term value equation commonly used in spectrum analysis. The molecular rotational constants can be obtained by using the expression and fitting it to the observed lines. As an example, the rotational levels of v2 band for transition (02°0-0110) of molecules N2O and HCN have been fitted and the fitting root-mean-square errors (RMS) are 0.00001 and 0.0014 cm-1, respectively.  相似文献   

3.
The structures and energies of complexes obtained upon interaction between glutathione (GSH) and alkali (Li+, Na+, K+), or alkaline earth metal (Be2+, Mg2+, Ca2+), or group IIIA (Al3+) cations were studied using quantum chemical density functional theory. The characteristics of the interactions between GSH and the metal cations at different nucleophilic sites of GSH were examined selecting systematically, both mono- and multi-coordinating were taken into account. The results indicated that the heteroatom of GSH, the radius and charge of metal ion, and the coordination number of the metal cation with the ligand played important roles in determining the stability of these complexes. Moreover, the intramolecular hydrogen migration in GSH could be promoted by the metal cations during coordination reaction. Furthermore, the Al3+ cation might catalyze the decarboxylation reaction and stimulate the formation of covalent bond between S atom and adjacent O atom of GSH.  相似文献   

4.
Meloun M  Capek J  Syrový T 《Talanta》2005,66(3):547-561
A critical comparison of the various PCA methods on the absorbance matrix data concerning the complexation equilibria between SNAZOXS and Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ or Naphtylazoxine 6S and Cd2+, Cu2+, Ni2+ and Zn2+ at 25 °C is performed. The number of complex species in a complex-forming equilibria mixture is the first important step for further qualitative and quantitative analysis in all forms of spectral data treatment. Therefore, the accuracy of the nine selected index functions for the prediction of the number of light-absorbing components that contribute to a set of spectra is critically tested using the principal component PCA algorithm INDICES in S-Plus software. Four precise methods based upon a knowledge of the experimental error of the absorbance data and five approximate methods requiring no such knowledge are discussed. Precise methods always predict the correct number of components even a presence of the minor species in mixture. Due to the large variations in the index values and even at logarithmic scale they do not reach an obvious point where the slope changes. An improved identification with the second or third derivative and derivative ratio function for some indices is preferred. Behind the number of various complexes formed the stability constants of species ML, ML2, (and ML3, respectively) type log β11, log β12, (and log β13, respectively) for the system of SNAZOXS (ligand L) with six metals (the standard deviation s(log βpq) of the last valid digits are in brackets) Cd2+ (4.50(3), 8.36(7)), Co2+ (5.75(6), 9.79(9), 13.05(2)), Cu2+ (6.69(6), 11.40(7)), Ni2+ (6.44(8), 10.91(11), 15.07(10)), Pb2+ (5.63(5), 9.97(9)) and Zn2+ (5.11(3), 8.84(5)) and for system of Naphtylazoxine 6S with Cd2+ (6.08(4), 11.44(7), 16.06(11)), Cu2+ (7.80(8), 13.41(14)), Ni2+ (6.35(12), 11.43(19), 16.68(24)) and Zn2+ (7.01(8), 12.65(15)) at 25 °C are estimated with SQUAD(84) nonlinear regression of the mole-ratio spectrophotometric data. The proposed strategy of an efficient experimentation in a stability constants determination, followed by a computational strategy, is presented with goodness-of-fit tests and various regression diagnostics able to prove the reliability of the chemical model proposed.  相似文献   

5.
本文报道了血清试样经50倍稀释后,选择适当的实验参数,在同一试液中用流动注射-原子吸收光谱法测定钾、钠、钙和镁。在载流流速为8ml/min时,进样频率达300次/小时,每次进样40μl(相当于血清0.8μl)。测定的相对标准偏差对钾、钠、钙和镁分别为1.1%,1.2%,1.3%和1.4%。本法用于测定人体血清并与临床分析方法相比较,结果良好。  相似文献   

6.
Sadler PJ  Viles JH 《Inorganic chemistry》1996,35(15):4490-4496
1H and (113)Cd NMR studies are used to investigate the Cd(2+) binding sites on serum albumin (67 kDa) in competition with other metal ions. A wide range of mammalian serum albumins possess two similar strong Cd(2+) binding sites (site A 113-124 ppm; site B 24-28 ppm). The two strong sites are shown not to involve the free thiol at Cys34. Ca(2+) influences the binding of Cd(2+) to isolated human albumin, and similar effects due to endogenous Ca(2+) are observed for intact human blood serum. (1)H NMR studies show that the same two His residues of human serum albumin are perturbed by Zn(2+) and Cd(2+) binding alike. Zn(2+) displaces Cd(2+) from site A which leads to Cd(2+) occupation of a third site (C, 45 ppm). The N-terminus of HSA is not the locus of the two strong Cd(2+) binding sites, in contrast to Cu(2+) and Ni(2+). After saturation of the N-terminal binding site, Cu(2+) or Ni(2+) also displaces Cd(2+) from site A to site C. The effect of pH on Cd(2+) binding is described. A common Cd(2+)/Zn(2+) binding site (site A) involving interdomain His residues is discussed.  相似文献   

7.
Extensive ab initio calculations both in gas phase and solution have been carried out to study the equilibrium structure, vibrational frequencies, and bonding characteristics of various actinyl (UO2(2+), NpO2(+), and PuO2(2+)) and their hydrated forms, AnO2(H2O)n(z+) (n=4, 5, and 6). Bulk solvent effects were studied using a continuum method. The geometries were fully optimized at the coupled-cluster singles + doubles (CCSD), density-functional theory (DFT), and M?ller-Plesset (MP2) level of theories. In addition vibrational frequencies have been obtained at the CCSD as well as MP2/DFT levels. The results show that both the short-range and long-range solvent effects are important. The combined discrete-continuum model, in which the ionic solute and the solvent molecules in the first and second solvation shells are treated quantum mechanically while the solvent is simulated by a continuum model, can predict accurately the bonding characteristics. Moreover, our values of solvation free energies suggest that five- and six-coordinations are equally preferred for UO2(2+), and five-coordinated species are preferred for NpO2(+) and PuO2(2+). On the basis of combined quantum-chemical and continuum treatments of the hydrated complexes, we are able to determine the optimal cavity radii for the solvation models. The coupled-cluster computations with large basis sets were employed for the vibrational spectra and equilibrium geometries both of which compare quite favorably with experiment. Our most accurate computations reveal that both five- and six-coordination complexes are important for these species.  相似文献   

8.
The complexes formed by the simplest amino acid, glycine, with different bare and hydrated metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)) were studied in the gas phase and in solvent in order to give better insight into the field of the metal ion-biological ligand interactions. The effects of the size and charge of each cation on the organization of the surrounding water molecules were analyzed. Results in the gas phase showed that the zwitterion of glycine is the form present in the most stable complexes of all ions and that it usually gives rise to an eta(2)O,O coordination type. After the addition of solvation sphere, a resulting octahedral arrangement was found around Ni(2+), Co(2+), and Fe(2+), ions in their high-spin states, whereas the bipyramidal-trigonal (Mn(2+) and Zn(2+)) or square-pyramidal (Cu(2+)) geometries were observed for the other metal species, according to glycine behaves as bi- or monodentate ligand. Despite the fact that the zwitterionic structure is in the ground conformation in solution, its complexes in water are less stable than those obtained from the canonical form. Binding energy values decrease in the order Cu(2+) > Ni(2+) > Zn(2+) approximately Co(2+) > Fe(2+) > Mn(2+) and Cu(2+) > Ni(2+) > Mn(2+) approximately Zn(2+) > Fe(2+) > Co(2+) for M(2+)-Gly and Gly-M(2+) (H(2)O)(n) complexes, respectively. The nature of the metal ion-ligand bonds was examined by using natural bond order and charge decomposition analyses.  相似文献   

9.
In the present study ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural Greek clinoptilolite was examined in terms of selectivity toward the above heavy metals in single- and multicomponent solutions in batch systems. Also examined are the influence of clinoptilolite on solution acidity and the effect of acidity on the ion exchange process. Clinoptilolite increases solution acidity due to the exchange of H(+) cations with the cations initially present in its structure. H(+) cations should be considered as competitive ones in ion exchange processes, and consequently ion exchange of metals is favored at high acidity values. Cu(2+) and Cr(3+) are the most sensitive cations with respect to acidity. Selectivity determination demonstrates that the selectivity at total concentration 0.01 N and acidity 2 in both single- and multicomponent solutions is following the order Pb(2+)>Fe(3+)>Cr(3+) > or =Cu(2+). This order is set since the first days of equilibration. However, Cu(2+) shows remarkable changes in selectivity and generally its uptake and selectivity are increasing with time. On the other hand selectivity in single metal solutions where acidity is not adjusted is following the order Pb(2+)>Cr(3+)>Fe(3+) congruent with Cu(2+).  相似文献   

10.
11.
Janos P  Stulík K  Pacáková V 《Talanta》1991,38(12):1445-1452
The HPLC separation of heavy metal cations was studied with a column packed with Separon SGX silica gel. The retention of the cations is controlled by an ion-exchange mechanism. The ion-exchange capacity is primarily dependent on the mobile phase pH. The analyte retention is further affected by the type and concentration of the completing agent present and of the counterion. The effect of acetate, tartrate and -hydroxyisobutyrate as complexing agents and that of methanol as the organic modifier were studied in detail and the results were compared with the theoretical model of ion-exchange separation. Simple mixtures of metals can be rapidly separated on a short column (30 × 3.3 mm i.d.), e.g., with a mobile phase containing 10−2M tartrate at pH 6.0. The metals separated can be detected by dc amperometry at a hanging mercury drop electrode. The limits of detection at an electrode potential of −0.95 V (Ag/AgCl) are in the units—tens of ng range with 20-μl samples with satisfactory precision (RSD values of 2–6%). The main advantages of the method are rapidly and simplicity because derivatization of the analytes is not required.  相似文献   

12.
The study was carried out on the sorption of heavy metals (Ni2+, Cu2+, Pb2+, and Cd2+) under static conditions from single- and multicomponent aqueous solutions by raw and pretreated clinoptilolite. The sorption has an ion-exchange nature and consists of three stages, i.e., the adsorption on the surface of microcrystals, the inversion stage, and the moderate adsorption in the interior of the microcrystal. The finer clinoptilolite fractions sorb higher amounts of the metals due to relative enriching by the zeolite proper and higher cleavage. The slight difference between adsorption capacity of the clinoptilolite toward lead, copper, and cadmium from single- and multicomponent solutions may testify to individual sorption centers of the zeolite for each metal. The decrease of nickel adsorption from multicomponent solutions is probably caused by the propinquity of its sorption forms to the other metals and by competition. The maximum sorption capacity toward Cd2+ is determined as 4.22 mg/g at an initial concentration of 80 mg/L and toward Pb2+, Cu2+, and Ni2+ as 27.7, 25.76, and 13.03 mg/g at 800 mg/L. The sorption results fit well to the Langmuir and the Freundlich models. The second one is better for adsorption modeling at high metal concentrations.  相似文献   

13.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

14.
15.
Calculations have been performed by using the semi-empirical all-valence-electron NDDO method for the molecules ethylene, formaldehyde, formyl fluoride, carbonyl fluoride, butadiene, acrolein, glyoxal, acryloyl fluoride, acrylic acid, glyoxalic acid and oxalic acid. The conformational stability of the conjugated systems were correctly reproduced with the exception of acrolein and acryloyl fluoride. The calculated dipole moments are in good qualitative agreement with the experimental values. It has been found that the ionization potentials are higher by a factor of 1.35 than the experimental ones. The singlet—singlet and singlet—triplet transition energies and oscillator strengths of ethylene, formaldehyde and formyl fluoride are presented. A factor of 1.46 is needed for good agreement with the experimental transition energies.  相似文献   

16.
The ground and excited states of the UO(2) molecule have been studied using a Dirac-Coulomb intermediate Hamiltonian Fock-space coupled cluster approach (DC-IHFSCC). This method is unique in describing dynamic and nondynamic correlation energies at relatively low computational cost. Spin-orbit coupling effects have been fully included by utilizing the four-component Dirac-Coulomb Hamiltonian from the outset. Complementary calculations on the ionized systems UO(2) (+) and UO(2) (2+) as well as on the ions U(4+) and U(5+) were performed to assess the accuracy of this method. The latter calculations improve upon previously published theoretical work. Our calculations confirm the assignment of the ground state of the UO(2) molecule as a (3)Phi(2u) state that arises from the 5f(1)7s(1) configuration. The first state from the 5f(2) configuration is found above 10,000 cm(-1), whereas the first state from the 5f(1)6d(1) configuration is found at 5,047 cm(-1).  相似文献   

17.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.  相似文献   

18.
19.
Reactions of laser-ablated Mg, Ca, Sr, and Ba atoms with O2 and H2 in excess argon give new absorptions in the O-H and O-M-O stretching regions, which increase together upon UV photolysis and are due to the M(OH)2 molecules (M = Mg, Ca, Sr, and Ba). The same product absorptions are observed in the metal atom reactions with H2O2. The M(OH)2 identifications are supported by isotopic substitution and theoretical calculations (B3LYP and MP2). The O-H stretching frequencies of the alkaline earth metal dihydroxide molecules decrease from 3829.8 to 3784.6 to 3760.6 to 3724.2 cm(-1) in the family series in solid argon, while the base strength of the solid compounds increases. Calculations show that Sr(OH)2 and Ba(OH)2 are bent at the metal center, owing to d orbital involvement in the bonding. Although these molecules are predominantly ionic, the O-H stretching frequencies do not reach the ionic limit of gaseous OH- going down the family group because of cation-anion polarization and p(pi) --> d(pi) interactions.  相似文献   

20.
We report the first transmission of solvent-coordinated dipositive plutonyl ion, Pu(VI)O(2)(2+), from solution to the gas phase by electrospray ionization (ESI) of plutonyl solutions in water/acetone and water/acetonitrile. ESI of plutonyl and uranyl solutions produced the isolable gas-phase complexes, [An(VI)O(2)(CH(3)COCH(3))(4,5,6)](2+), [An(VI)O(2)(CH(3)COCH(3))(3)(H(2)O)](2+), and [An(VI)O(2)(CH(3)CN)(4)](2+); additional complex compositions were observed for uranyl. In accord with relative actinyl stabilities, U(VI)O(2)(2+) > Pu(VI)O(2)(2+) > Np(VI)O(2)(2+), the yields of plutonyl complexes were about an order of magnitude less than those of uranyl, and dipositive neptunyl complexes were not observed. Collision-induced dissociation (CID) of the dipositive coordination complexes in a quadrupole ion trap produced doubly- and singly-charged fragment ions; the fragmentation products reveal differences in underlying chemistries of plutonyl and uranyl, including the lower stability of Pu(VI) as compared with U(VI). Particularly notable was the distinctive CID fragment ion, [Pu(IV)(OH)(3)](+) from [Pu(VI)O(2)(CH(3)COCH(3))(6)](2+), where the plutonyl structure has been disrupted and the tetravalent plutonium hydroxide produced; this process was not observed for uranyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号