首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of ten metastable immonium ions of general structure R1R2C?NH+C4H9 (R1 = H, R2 = CH3, C2H5; R1 = R2 = CH3) are reported and discussed. Elimination of C4H8 is usually the dominant fragmentation pathway. This process gives rise to a Gaussian metastable peak; it is interpreted in terms of a mechanism involving ion-neutral complexes containing incipient butyl) cations. Metastable immonium ions ontaining an isobutyl group are unique in undergoing a minor amount of imine (R1R2C?NH) loss. This decomposition route, which also produces a Gaussian metastable peak, decreases in importance as the basicity of the imine increases. The correlation between imine loss and the presence of an isobutyl group is rationalized by the rearrangement of the appropriate ion-neutral complexes in which there are isobutyl cations to the isomeric complexes containing the thermodynamically more stable tert-butyl cations. A sizeable amount of a third reaction, expulsion of C3H6, is observed for metastable n-C4H9 +NH?CR1R2 ions; in contrast to C4H8 and R1R2C?NH loss, C3H6 elimination occurs with a large kinetic energy release (40–48 kJ mol?1) and is evidenced by a dish-topped metastable peak. This process is explained using a two-step mechanism involving a 1,5-hydride shift, followed by cleavage of the resultant secondary open-chain cations, CH3CH+ CH2CH2NHCHR1R2.  相似文献   

2.
We present a direct ab initio dynamics study on the hydrogen abstraction reaction CH2O + HO2 --> CHO + H2O2, which is predicted to have four possible reaction channels caused by different attacking orientations of HO2 radical to CH2O. The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of the four reaction channels are calculated at the B3LYP/cc-pVTZ level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of some single-point multilevel energy calculations (HL). The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that, in the whole temperature range, the more favorable reaction channels are Channels 1 and 3. The total ICVT/SCT rate constants of the four channels at the HL//B3LYP/cc-pVTZ level of theory are in good agreement with the available experiment data over the measured temperature ranges, and the corresponding three-parameter expression is k(ICVT/SCT) = 3.13 x 10(-20) T(2.70) exp(-11.52/RT) cm3 mole(-1) s(-1) in the temperature range of 250-3000 K. Additionally, the flexibility of the dihedral angle of H2O2 is also discussed to explain the different experimental values.  相似文献   

3.
Five hydrogen abstraction reactions, CH4 + R CH3 + HR have been studied usingab initio SCF and CI methods. R was successively chosen as H, CH3, NH2, OH and F. Geometries were fully optimized at SCF level and energies were computed at CI level for products, reactants and transition states. Quadratic hypersurfaces were fitted in the neighborhood of the most important points of the potential energy hypersurfaces and vibrational analysis were performed thereupon. Wigner's and Christov's approximations were used to obtain an idea of the importance of tunneling of H atoms through the reaction barrier, and this effect was shown to be non-negligible. Finally, rate constant calculation were carried out at different temperatures.Chercheur Qualifié au Fonds National Belge de la Recherche Scientifique.  相似文献   

4.
The hydrogen abstraction reactions of CH3CHFCH3 and CH3CH2CH2F with the OH radicals have been studied theoretically by a dual-level direct dynamics method. The geometries and frequencies of all the stationary points are optimized by means of the DFT calculation. There are complexes at the reactant side or exit route, indicating these reactions may proceed via indirect mechanisms. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the MC-QCISD/3 method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range 200-2000 K. The canculated CVT/SCT rate constants are consistent with available experimental data. The results show that both the variation effect and the SCT contribution play an important role in the calculation of the rate constants. For reactions CH3CHFCH3 and CH3CH2CH2F with OH radicals, the channels of H-abstraction from -CHF- and -CH2- groups are the major reaction channels, respectively, at lower temperature. Furthermore, to further reveal the thermodynamics properties, the enthalpies of formation of reactants CH3CHFCH3, CH3CH2CH2F, and the product radicals CH3CFCH3, CH3CHFCH2, CH3CH2CHF, CH3CHCH2F, and CH2CH2CH2F are studied using isodesmic reactions.  相似文献   

5.
The insertion reactions of the germylenoid H2GeClMgCl with RH (R = F, OH, NH2) have been studied by using the DFT B3LYP and QCISD methods. The geometries of the stationary points on the potential energy surfaces of the reactions were optimized at the B3LYP/6-311+G(d, p) level of theory. The calculated results indicate that all the mechanisms of the three insertion reactions are identical to each other. The QCISD/6-311++G(d, p)//B3LYP/6-311+G(d, p) calculated potential energy barriers for the three insertion reactions of R = F, OH, and NH2 are 164.62, 193.30, and 200.73 kJ mol?1, and the reaction energies for the three reactions are ?57.46, ?35.65, and ?22.22 kJ mol?1, respectively. Under the same situation, the insertion reactions should occur easily in the following order H-F > H-OH > H-NH2. In THF solvent the insertion reactions get more difficult than in gas phase.  相似文献   

6.
A combined density functional and ab initio quantum chemical study of the substitution reactions of the germylenoid H2GeFBeF with RH (R = F, OH, NH2) compounds was carried out. The geometries of all the stationary points of the reactions were optimized using the DFT B3LYP method and then the QCISD method was used to calculate the single-point energies. The theoretical calculations indicated that along the potential energy surface, there were one transition state (TS) and one intermediate (IM) which connected the reactants and the products. The three substitution reactions of H2GeFBeF with RH are compared with the addition reactions of H2Ge with RH. And based on the calculated results we concluded that the substitution reactions of H2GeFBeF + RH involve two steps. One is dissociation onto H2Ge + BeF2, and the other is the addition reaction of H2Ge with RH.  相似文献   

7.
用QC ISD(T)/6-311 G(3DF,3PD)/MP2/6-311G(D,P)方法研究了H原子与CH3NH2的抽氢反应过程。该反应包含两个反应通道:H分别从CH3基团(R1)和NH2(R2)基团上抽氢。R1势垒比R2势垒低3.42kJ/mol,表明R1是主反应通道。在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应温度范围为200~4000K内的速率常数,所得结果与实验值符合的很好。动力计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用。  相似文献   

8.
Tunneling chemical reactions between deuterated methyl radicals and the hydrogen molecule in a parahydrogen crystal have been studied by Fourier transform infrared spectroscopy. The tunneling rates of the reactions R + H2 --> RH + H (R = CD3,CD2H,CDH2) in the vibrational ground state were determined directly from the temporal change in the intensity of the rovibrational absorption bands of the reactants and products in each reaction in solid parahydrogen observed at 5 K. The tunneling rate of each reaction was found to differ definitely depending upon the degree of deuteration in the methyl radicals. The tunneling rates were determined to be 3.3 x 10(-6) s(-1), 2.0 x 10(-6) s(-1), and 1.0 x 10(-6) s(-1) for the systems of CD3, CD2H, and CDH2, respectively. Conversely, the tunneling reaction between a CH3 radical and the hydrogen molecule did not proceed within a week's time. The upper limit of the tunneling rate of the reaction of the CH3 radical was estimated to be 8 x 10(-8) s(-1).  相似文献   

9.
10.
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.  相似文献   

11.
The dual-level direct dynamics method has been employed to investigate the H-abstraction reaction of CF(3)CF(2)CH(2)OH with OH radical, which is predicted to have two classes of possible reaction channels caused by different positions of hydrogen atom attack. The minimum-energy path is calculated at the B3LYP/6-311G(d,p) level, and the energetic information is further refined by the MC-QCISD method. To compare the structures, the other method MPW1K/6-311G(d,p) is also applied to this system. Hydrogen-bonded complexes are presented in the reactant and product sides of the three channels, indicating that each reaction may proceed via an indirect mechanism. The rate constants for each reaction channel are evaluated by canonical variational transition-state theory (CVT) with the small-curvature tunneling correction (SCT) over a wide range of temperatures from 200 to 2000 K. The calculated CVT/SCT rate constants are found to be in good agreement with the available experimental values. The result shows that the variational effect is small, and in the lower-temperature range, the SCT effect is important for each reaction. It is shown that hydrogen abstracted from the -CH(2)- position is the major channel, while H-abstraction from the -OH position may be neglected with the temperature increasing.  相似文献   

12.
The title complexes (1, X = F;2, X = C 1; 3, X = Br and isomorphous with2; 4, X = I) have been prepared and characterized by X-ray crystallography. Crystal data, Mo radiation:1, space groupCc,Z =4,a = 12.017(3),b = 14.263(5),c = 17.210(7) Å,β = 103.06(2)°, andR F =0.053 for 2044 observed data;2, space groupCc,Z = 4,a = 12.817(3),b = 11.072(2),c = 16.781(5) Å,β =90.74(2)°,R F = 0.044 for 2249 data;3,a = 12.873(4),b = 11. 119(2),c = 16.957(2) Å,β = 89.11(2)°,R F = 0.049 for 2059 data;4, space groupP21/n,Z = 4,a = 8.858(2),b = 14.358(3),c = 15.379(3) Å,β = 93.88(1)°,R F = 0.068 for 3119 data. In all four structures each thiourea molecule interacts with adjacent thiourea molecules via N-H ... S hydrogen bonds to give a ribbon-like arrangement, and also forms a pair of ‘chelating’ N-H ... X hydrogen bonds with a halide ion, resulting in an anionic framework (in1–3) or composite ribbon (in4) as a component in the crystal packing. The measured ranges of N... X distances are: 2.819(5)-2.994(7) Å for1, 3.252(3)-3.291(3)Å for 2, 3.353(6)-3.459(6)Å for3, and 3.564(5)-3.680(5) Å for 4.  相似文献   

13.
Microcanonical variational transition-state theory was used to determine the entropies of activation for hydrogen-bond cleavage reactions leading to CH(3)CN + ROH(2)(+) in a series of acetonitrile-alcohol proton-bound pairs (CH(3)CN)(ROH)H(+) (where R = CH(3), CH(3)CH(2), CH(3)CH(2)CH(2), and (CH(3))(2)CH). In each case, the dissociation potential surface was modelled at the MP2/6-31 + G(d) level of theory. The dissociating configurations having the minimum sums-of-states were identified in each case and the resulting entropies of activation were calculated. Combined with previous work on the competing reaction leading to CH(3)CNH(+) + ROH, the results permitted the determination of the Delta(DeltaS) in each proton-bound pair. For the (CH(3)CN)(CH(3)OH)H(+) and (CH(3)CN)(CH(3)CH(2)OH)H(+) proton-bound pairs, the entropies of activation for the two dissociating channels are essentially the same [i.e., Delta(DeltaS) = 0], while Delta(DeltaS) for the propanol-containing pairs ranged between 40 and 45 J K(-1) mol(-1). The latter non-zero values are due to a combination of the location of the dividing surface in each dissociation and the rapidity with the frequencies of the vanishing vibrational modes go to zero as they are converted to product translations and rotations during the dissociation.  相似文献   

14.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H+NH3-->H2+NH2 reaction using a seven-dimensional model and an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated for the initial ground and seven excited states of NH3 with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants are calculated for the temperature range 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the total reaction probabilities are overall very small, (b) the symmetric and asymmetric NH stretch excitations enhance the reaction significantly and almost all of the excited energy deposited was used to reduce the reaction threshold, (c) the excitation of the umbrella and bending motion have a smaller contribution to the enhancement of reactivity, (d) the main contribution to the thermal rate constants is thought to come from the ground state at low temperatures and from the stretch excited states at high temperatures, and (e) the calculated thermal rate constants are three to ten times smaller than the experimental data and transition state theory results.  相似文献   

15.
The preparation of trans-[Co(NH3)4(CH3NH2)Br]2+ and trans-[Co(NH3)4(CH3NH2)-(NO3)]2+ complexes is described. The UV-VIS spectra of the complexes indicate a decrease of the ligand field compared to the parent pentaammines. Infrared spectra match with the pattern of the corresponding pentaammines. The catalyzed (by Hg2+) aquation of the trans-bromomethylamine complex go under retention of the stereochemical configuration. The base hydrolysis (studied at 25°C) products show trans to cis rearrangement for both complexes. 1H NMR spectroscopy is used for identification of the stereochemical configuration of the compounds.  相似文献   

16.
采用1HNMR谱研究了通式为〔M3ⅢO(OOCR)6L3〕+(M=Cr,Fe,Mn;R=CH3,C2H5,CH2NH2;L=C5H5N,H2O)的一系列氧心三核过渡金属配合物,主要考察其1H化学位移随金属、配体、温度、溶剂等因素变化而变化的规律。结果表明,骨架金属对化学位移的影响最大,M3O中的3个金属离子间存在反铁磁交换相互作用。对Mn配合物中顺磁中心对化学位移和线宽的影响机制的研究表明,其1H各向同性位移主要由接触作用贡献  相似文献   

17.
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.  相似文献   

18.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H2+NH2-->H+NH3 reaction using a seven dimensional model on an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values and nonreactive NH2 group keeps C2v symmetry and the rotation-vibration coupling in NH2 is neglected. The total reaction probabilities are calculated when the two reactants are initially at their ground states, when the NH2 bending mode is excited, and when H2 is on its first vibrational excited state, with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants and equilibrium constants are calculated for the temperature range of 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the reaction is dominated by ground-state reactivity and the main contribution to the thermal rate constants is thought to come from this state, (b) the excitation energy of H2 was used to enhance reactivity while the excitation of the NH2 bending mode hampers the reaction, (c) the calculated thermal rate constants are very close to the experimental data and transition state theory results at high and middle temperature, while they are ten times higher than that of transition state theory at low temperature (T=200 K), and (d) the equilibrium constants results indicate that the approximations applied may have different roles in the forward and reverse reactions.  相似文献   

19.
The reactions of small saturated hydrocarbons by gaseous nickel cations NiX+ (X=F, Cl, Br, I) are investigated by means of electrospray ionization mass spectrometry. The halide cations are obtained from solutions of the corresponding Ni(II) salts in water or methanol as solvents. NiF+ is the only Ni(II) halide complex that brings about thermal activation of methane. The branching ratios of the observed reactions with C2H6, C3H8, and nC4H10 are shifted systematically by changing the nature of both the ligand X and the substrate RH. In the elimination of HX (X=F, Cl, Br, I), the formal oxidation state of the metal ion appears to be conserved, and the importance of this reaction channel decreases in going from NiF+ to NiI+. A reversed trend is observed in the losses of small closed-shell neutral molecules, that is, H2, CH4 and C2H6, which dominate the gas-phase ion chemistry of NiI+/RH couples. Additionally, inner-sphere electron-transfer reactions take place for a few systems, that is, the delivery of hydride or methanide ions from the hydrocarbon to NiX+ in the course of which the hydrocarbon is converted to a carbenium ion and the cationic metal complex gives rise to a neutral RNiX molecule (R=H, CH3). This process gains importance with decreasing atomic number of the halides and with increasing the size of the alkane. Thus, it constitutes the major pathway in the reactions of NiF+ with propane and n-butane, whereas it is not observed for any of the NiI+/RH couples investigated. Concerning the regioselectivity of the reactions with propane and n-butane, heterolytic cleavage of secondary carbon--hydrogen bonds is clearly preferred compared to that of primary ones, as revealed by deuterium labeling studies. For the NiF+/C3H8 couple, the selectivity of the hydride transfer is as large as 360 in favor of the secondary positions. Though smaller, large preferences for the activation of secondary C--H bonds are also operative in homolytic bond activation of RH (R=nC3H7, nC4H9).  相似文献   

20.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号