首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Existing measurements of the collision-induced rototranslational absorption spectra of gaseous mixtures of methane with helium, hydrogen, or nitrogen are compared to theoretical calculations, based on refined multipole-induced and dispersion force-induced dipole moments of the interacting molecular pairs CH4-He, CH4-H2, and CH4-N2. In each case the measured absorption exceeds the calculations substantially at most frequencies. We present the excess absorption spectra, that is the difference of the measured and the calculated profiles, of these supramolecular CH4-X systems at various gas temperatures. The excess absorption spectra of CH4-X pairs differ significantly for each choice of the collision partner X, but show common features (spectral intensities and shape) at frequencies from roughly 200 to 500 cm(-1). These excess spectra seem to defy modeling in terms of ad hoc exchange force-induced dipole components attempted earlier. We suggest that besides the dipole components induced by polarization in the electric molecular multipole fields and their gradients, and by exchange and dispersion forces, other dipole induction mechanisms exist in CH4-X complexes that presumably are related to collisional distortion of the CH4 molecular frame.  相似文献   

2.
The IR and UV/vis linear dichroic spectra of reduced anionic flavin mononucleotide (FMNH-) partially oriented in poly(vinyl alcohol) (PVA) films have been measured to determine the direction of the major electronic transition dipole moments. The IR linear dichroism (LD) was measured in the 1750-1350 cm(-1) region to provide the overall molecular orientation of the FMNH- in the stretched films. Time-dependent density functional theory using the B3LYP functional was used to calculate the normal modes and the transition dipole moments of reduced lumiflavin. The calculated normal modes assisted in IR band assignments and in the determination of the IR transition dipole moment directions which were required for the determination of the orientation parameters for FMNH- in PVA films. The UV/vis LD spectrum was measured over the 200-700 nm region and was resolved into contributions from three pi-->pi* transitions. The directions of the transitions are 90 degrees+/-4 degrees at 440 nm, 79 degrees+/-4 degrees at 350 nm, and 93 degrees+/-4 degrees at 290 nm with counterclockwise rotations with respect to the N5-N10 axis. Comparison of the calculated and experimentally determined transition dipole moments allowed for refined assignment of the transition dipole moment directions. To our knowledge, this is the first experimental evidence that the 350-450 nm absorption arises from two unique transitions. Remarkably, the two lowest energy transition dipole moments for FMNH- are nearly parallel to those obtained in prior studies for both oxidized and semiquinone flavin.  相似文献   

3.
Experimental dipole moments of curcumin (1) and of its parent compound dicinnamoylmethane (2) were determined in dioxane and benzene, respectively. Theoretical dipole moments were calculated using a combination of the PPP method (pi-moment) and a vector sum of the sigma-bond moments (sigma-moment) as well as by the ZINDO/1 method. Solvatochromic correlations were used to obtain the experimental first excited singlet-state dipole moments. The experimental electronic absorption spectra were compared with the calculated transitions.  相似文献   

4.
We applied cavity-enhanced frequency modulation absorption spectroscopy (also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy) to perform high-resolution spectroscopy of the sixth overtone band of nitric oxide near 797 nm. By using novel high-bandwidth balanced detectors, baseline variations caused by residual amplitude modulation were significantly reduced. The ultrahigh sensitivity (2 x 10(-10) cm(-1) minimum detectable absorption at 1 Hz detection bandwidth) of our spectrometer allowed accurate measurements of 15 individual line intensities of P- and R-branch transitions in the 2Pi(1/2)-2Pi(1/2) subband. A vibrational transition moment of 3.09(6) muD+/-13% and Herman-Wallis coefficients of a = -0.0078(26) and b = 0.001 25(45) were found by fitting the line intensities. Based on our measured transition moment, and those of other transitions from the literature, a new parametrization for the electric dipole moment function (EDMF) of nitric oxide, valid for 0.91 < or = r < or = 1.74 A, has been extracted. The residuals of this fit demonstrate that the derived EDMF is the most accurate representation to date of the dipole moment function. The new EDMF will be valuable for accurate intensity prediction of transitions that cannot be easily measured experimentally.  相似文献   

5.
We report a theoretical study of nonadiabatic transitions within the first-tier ion-pair states of molecular iodine induced by collisions with CF(4). We propose a model that treats the partner as a spherical particle with internal vibrational structure. Potential energy surfaces and nonadiabatic matrix elements for the I(2)-CF(4) system are evaluated using the diatomics-in-molecule perturbation theory. A special form of the intermolecular perturbation theory for quasi-degenerate electronic states is implemented to evaluate the corrections to the long-range interaction of transition dipole moments of colliding molecules. The collision dynamics is studied by using an approximate quantum scattering approach that takes into account the coupling of electronic and vibrational degrees of freedom. Comparison with available experimental data on the rate constants and product state distributions demonstrates a good performance of the model. The interaction of the transition dipole moments is shown to induce very efficient excitation of the dipole-allowed upsilon(3) and upsilon(4) modes of the CF(4) partner. These transitions proceed predominantly through the near-resonant E-V energy transfer. The resonant character of the partner's excitation and the large mismatch in vibrational frequencies allow one to deduce the partner's vibrational product state distributions from the distributions measured for the molecule. The perspectives of the proposed theoretical model for treating a broad range of molecular collisions involving the spherical top partners are discussed.  相似文献   

6.
Using cavity ring-down spectroscopy we measured the collision induced absorption spectrum associated with the a(1)Δ(v = 2) ←X(3)Σ(g)(-)(v = 0) band of oxygen near 922 nm both in pure oxygen and in mixtures of oxygen and nitrogen. For pure oxygen, we report for this band an integrated absorption of (1.56 - 0.04/+0.40) × 10(-5) cm(-2) amg(-2). We find that collisions between oxygen and nitrogen do not result in any measurable CIA signal. At 1 bar of oxygen, this collision induced transition is much stronger than the allowed magnetic dipole and electric quadrupole transitions.  相似文献   

7.
Vibrational transition dipole moments and absorption band intensities for the ground state of formaldehyde, including the deuterated isotopic forms, are calculated. The analysis is based on ab initio SCF and CI potential energy and dipole moment surfaces. The formalism derives from second-order perturbation theory and involves the expansion of the dipole moment in terms of normal coordinates, as well as the incorporation of point group symmetry in the selection of the dipole moment components for the allowed transitions. Dipole moment expansion coefficients for the three molecule-fixed Cartesian coordinates of formaldehyde are calculated for internal and normal coordinate representations. Transition dipole moments and absorption band intensities of the fundamental, first overtone, combination, and second overtone transitions are reported. The calculated intensities and dipole moment derivatives are compared to experiment and discussed in the context of molecular orbital and bond polarization theory.  相似文献   

8.
The ultraviolet absorption spectrum in the range 340-185 nm in the vapour and solution phase has been measured for 2-fluoro-5-bromopyridine. Three fairly intense band systems identified as the pi* <-- pi transitions II, III and IV have been observed. A detailed vibronic analysis of the vapor and solution spectra is presented. The first system of bands is resolved into about sixty-two distinct vibronic bands in the vapour-phase spectrum. The 0,0 band is located at 35944 cm(-1). Two well-developed progressions, in which the excited state frequencies nu'25 (283 cm(-1)) and nu'19 (550 cm(-1)) are excited by several quanta, have been observed. The corresponding excited state vibrational and anharmonicity constants are found to be omega'i = 292 cm(-1), x'ii = 4.5 cm(-1) (i = 25) and omega'i = 563.8 cm(-1), x'ii = 6.9 cm(-1) (i = 19). The other two band systems show no vibronic structure, the band maxima being located at 48346 and 52701 cm(-1), respectively. The oscillator strength of the band systems in different solutions and the excited state dipole moments associated with the first two transitions have been determined by the solvent-shift method. The infrared spectrum in the region 4000-130 cm(-1) and the laser Raman spectrum of the molecule in the liquid state have been measured and a complete vibrational assignment of the observed frequencies is given. A correlation of the ground and excited state fundamental frequencies observed in the UV absorption spectrum with the Raman or infrared frequencies is presented.  相似文献   

9.
Refractometric, dielectric and electro-optical absorption measurements are reported for 1-dimethylamino-2,6-dicyano-4-methyl-benzene (I) and 1,4-bis(4′-dimethylamino-3′,5′-dicyanophenyl)bicyclo[2.2.2]octane (II). The evaluation leads to dipole moments and polarizabilities of the ground state as well as the first dipole allowed singlet state. The experimental res excellently substantiate the method of electro-optical absorption measurements in solution. It is shown that the excited dimer wavefunctions of the bichromophoric molecule II localize by solvent induced local site perturbations.  相似文献   

10.
A series of diphenylacetylenes with one 1,3,2-benzodiazaborolyl end group (BDB) and a second end group X (X = H, OMe, NMe(2), SMe, CN and BDB) were synthesized using established 1,3,2-benzodiazaborole methodologies. The 1,3,2-benzodiazaborolyldiphenylacetylenes with X = p-H (4), p-OMe (5), p-NMe(2) (6), p-SMe (7) and p-CN (8) end groups are functionalized with cyano groups at the central ring in an ortho-position to the triple bond. Molecular structures of 2, 3, 5, 6 and 7 were determined by X-ray diffraction. These borylated systems show intense blue luminescence in cyclohexane, toluene, chloroform, dichloromethane and tetrahydrofuran, whereas green luminescence was observed in acetonitrile solutions. Thereby Stokes shifts in the range 1700-8600 cm(-1) and quantum yields of 0.60-1.00 were observed in cyclohexane solutions. The absorption maxima (308-380 nm) are well reproduced by TD-DFT computations (B3LYP/G-311G(d,p)) and arise from strong HOMO-LUMO transitions. The LUMOs in all the molecules under study are mainly located on the diphenylacetylene bridge, while with the exception of the dimethylamino derivative 6, the HOMO is largely benzodiazaborolyl in character. Thus, the S1←S0 absorption bands are assigned to π(diazaborolyl)-π*(diphenylacetylene) transitions. In contrast to this, in compound 6 the HOMO is mainly represented by the terminal dimethylaminophenyl unit. While calculated ground state dipole moments μ(g) are small (1.1-7.5 D), experimentally determined changes of the dipole moments upon excitation are large (14.8-19.7 D) and reflect a significant charge transfer upon excitation. NLO activities of the rod-structured compounds 2, 4, 6 and 8 are indicated by calculated static first-order hyperpolarizabilities β up to 76.8 × 10(-30) esu.  相似文献   

11.
Static and time-resolved fluorescence studies were carried out to investigate the photophysical properties and fluoride sensing abilities of highly fluorescent thienyl-containing 1,3-diethyl-1,3,2-benzodiazaboroles. Absorption and fluorescence spectra were measured in various solvents, showing the fluorophores to emit in the visible wavelength region with colors varying from blue to orange and quantum yields ranging between 0.21 and 1. Measured Stokes shifts of 2898 cm(-1) to 9308 cm(-1) were used to calculate the difference between excited- and ground-state dipole moments of the fluorophores. Values up to 18.8 D are of the same magnitude as for designed polarity probes such as PRODAN, supporting the idea of internal charge transfer transitions. Quenching studies with pyridine observing static and time-resolved fluorescence revealed a purely dynamic quenching mechanism and low Lewis acidity of the boron within the benzodiazaborolyl moiety compared to other triarylboranes. In contrast to this, quenching with fluoride was shown to stem from adduct formation. Reversible complexation of fluoride follows a simple mechanism for multi-functionalized benzodiazaboroles 2b and 2c, while those containing only one benzodiazaborole moiety (1 and 2a) show a more complicated behaviour, which might be explained by aggregation. Combining a benzodiazaborole group and a dimesitylborane function results in spectrally switchable fluoride sensors 3a and 3b, since the two boron sides can be deactivated for fluorescence in a stepwise manner.  相似文献   

12.
We have carried out the first calculations of the infrared absorption spectrum of cyclic-N(3). Accurate vibrational energies and wave functions computed with incorporation of the geometric phase effect (via gauge theory) and using an ab initio potential energy surface were employed in this work. A sophisticated fully dimensional dipole moment function was constructed using accurate ab initio calculations and a three-dimensional-spline interpolation. Transformation of the dipole moment vector function from the reference frame associated with instantaneous principal axes of inertia to the laboratory-fixed reference frame was carried out using hyperspherical coordinates. We found that the permanent dipole moment of cyclic-N(3) in the ground vibrational state is relatively small (170 mD). The excited vibrational states show permanent dipole moments in the 10-25 mD range. The most intense part of the infrared absorption spectrum is observed in the deep infrared part of spectrum, 75-275?cm(-1), where five lines exhibit absolute absorption intensities in the range between 0.5 and 1.2 km/mol. These transitions correspond to excitation of the pseudorotational progression of states. Several unique spectroscopic features discussed in the paper should help to identify cyclic-N(3) in the laboratory.  相似文献   

13.
Abstract— In this paper we describe the determination of the orientation of the absorption and emission transition dipoles of chlorophyll a and pheophytin a in their molecular frame. For this purpose we have embedded the pigments in anhydrous nitrocellulose films with a concentration of 2 × 10-7 mol/g. We have shown previously that under these conditions the pigments are in a purely monomeric state, are distributed uniformly both before and after stretching and that no intermolecular energy transfer among the molecules takes place.
Using a combination of steady-state anisotropy experiments on unstretched films and angle-resolved fluorescence depolarization measurements on stretched films, we obtain the orientation of the transition dipole moments of both pigments in their molecular frame and the orientational distribution function of the molecules relative to the stretching direction of the film.
The steady-state anisotropy measurements indicate that chlorophyll a has two distinct emission dipole moments and that excitation in the Soret-region results in simultaneous excitation of two or more absorption transition dipole moments. On the other hand, excitation in the QY-band involves only a single dipole moment. The directions of the transition dipole moments in the molecular frame are obtained from the angle-resolved measurements. Pheophytin a also exhibits two emission dipole moments, but the angle between them is much smaller than that between the corresponding dipoles for chlorophyll a . As a consequence the dipole moments contributing to the Soret-region could not be resolved and only an effective absorption transition dipole moment in the Soret-region is extracted.  相似文献   

14.
It is shown in this paper that from the study of the induced infrared absorption spectra of homonuclear diatomic molecules solvated as impurities in a molecular quantum solid, it is possible to extract information about the rovibrational matrix elements of the multipole moments and polarizability of the embedded molecule. Theoretical expressions are derived for the integrated absorption coefficients of various multipole-field-induced double transitions involving guest-host pairs in a solid para-H(2) matrix. The intensities of some of the quadrupole moment induced transitions involving the N(2)-para-H(2) pair have been measured. From a comparison of the experimental and theoretical intensities, rovibrational matrix elements of the quadrupole moment of N(2) are determined in its ground vibrational state.  相似文献   

15.
Reported here are measurements of the magnitude and orientation of the induced dipole moment that is produced when an indole molecule in its ground S(0) and electronically excited S(1) states is polarized by the attachment of a hydrogen bonded water molecule in the gas phase complex indole-H(2)O. For the complex, we find the permanent dipole moment values mu(IW)(S(0)) = 4.4 D and mu(IW)(S(1)) = 4.0 D, values that are substantially different from calculated values based on vector sums of the dipole moments of the component parts. From this result, we derive the induced dipole moment values mu(I) (*)(S(0)) = 0.7 D and mu(I) (*)(S(1)) = 0.5 D. The orientation of the induced moment also is significantly different in the two electronic states. These results are quantitatively reproduced by a purely electrostatic calculation based on ab initio values of multipole moments.  相似文献   

16.
The spectra of symmetry-forbidden transitions and internal conversion were investigated in the present work. Temperature dependence was taken into account for the spectra simulation. The vibronic coupling, essential in the two processes, was calculated based on the Herzberg-Teller theory within the Born-Oppenheimer approximation. The approach was employed for the symmetry-forbidden absorption/fluorescence, and internal conversion between 1(1)A(1g) and 1(1)B(2u) states in benzene. Vibrational frequencies, normal coordinates, electronic transition dipole moments, and non-adiabatic coupling matrix elements were obtained by ab initio quantum chemical methods. The main peaks, along with the weak peaks, were in good agreement with the observed ones. The rate constant of the 1(1)A(1g)← 1(1)B(2u) internal conversion was estimated within the order of 10(3) s(-1). This could be regarded as the lower limit (about 4.8 × 10(3) s(-1)) of the internal conversion. It is stressed that the distortion effect was taken into account both in the symmetry-forbidden absorption/fluorescence, and the rate constants of internal conversion in the present work. The distortion effects complicate the spectra and increase the rate constants of internal conversion.  相似文献   

17.
Classical molecular dynamics simulations have been carried out for gaseous CO(2) starting from various anisotropic intermolecular potential energy surfaces. Through calculations for a large number of molecules treated as rigid rotors, the time evolution of the interaction-induced electric dipole vector is obtained and the Laplace transform of its autocorrelation function gives the collision-induced absorption rototranslational spectrum. The results are successfully compared with those of previous similar calculations before studies of the influences of the intermolecular potential and induced-dipole components are made. The calculated spectra show a significant sensitivity to anisotropic forces consistently with previous analyses limited to the spectral moments. The present results also demonstrate the importance of vibrational and back-induction contributions to the induced dipole. Comparisons between measured far infrared (0-250 cm(-1)) spectra at different temperatures and results calculated without the use of any adjustable parameter are made. When the best and more complete input data are used, the quality of our predictions is similar to that obtained by Gruszka et al. [Mol. Phys. 93, 1007 (1998)] after the introduction of ad hoc short-range overlap contributions. Our results thus largely obviate the need for such contributions the magnitudes of which remain questioned. Nevertheless, problems remain since, whereas good agreements with measurements are obtained above 50 cm(-1), the calculations significantly underestimate the absorption below, a problem which is discussed in terms of various possible error sources.  相似文献   

18.
The dipole moments, μ, of 1,3-dimethylthiourea, 1,3-dimethyl-2-cyanoguanidine and 1,1-bis-methylamino-2-nitroethene which are important partial structures of histamine H2 receptor antagonist drugs have been determined in aqueous solution at 25° from static permittivities measured over a wide frequency range. The dipole moments were respectively 10.0, 13.1 and 15.1 Debyes, suggesting that each compound has a high degree of zwitterionic character in water.  相似文献   

19.
Molecular mass of the iron-dextran complex (M(w)=1133 kDa), diameter of its particles (~8.3 nm) and the content of iron ions in the complex core (N(Fe)=6360) were determined by static light scattering, measurements of refractive index increment and the Cotton-Mouton effect in solution. The known number of iron ions permitted the calculation of the permanent magnetic dipole moment value to be μ(Fe)=3.17×10(-18) erg Oe(-1) and the determination of anisotropy of linear magneto-optical polarizabilities components as Δχ=9.2×10(-21) cm(3). Knowing both values and the value of the mean linear optical polarizability α=7.3×10(-20) cm(3), it was possible to show that the total measured CM effect was due to the reorientation of the permanent and the induced magnetic dipole moments of the complex. Analysis of the measured magneto-optical birefringence indicated very small optical anisotropy of linear optical polarizability components, κ(α), which suggested a homogeneous structure of particles of spherical symmetry.  相似文献   

20.
The photophysical properties of newly synthesized bischromophoric solvatochromic stilbazolium dyes, 1,3-bis-[4-(p-N,N-dialkylaminostyryl)pyridinyl]propane dibromides (C1-C9), were studied in a series of solvents and their spectroscopic properties were compared with structurally related, monochromophoric styrylpyridinium dyes (SP1-SP9). The position of the UV-vis absorption spectra maximum of novel dyes is only slightly solvent polarity dependent in contrast to the fluorescence spectra that show pronounced solvatochromic effect demonstrated by a large Stokes shifts. The influence of the solvent on absorption and emission spectra, and the solvatochromic properties observed for both ground and first excited states for all the dyes were used for the evaluation of their excited state dipole moments. The ground state dipole moments of both mono- and bischromophoric dyes were established by applying ab initio calculations. The calculations and measurements unexpectedly show that the bischromophoric dyes are characterized by ground state dipole moments being equal to about half of that characterizing their monomeric equivalents, while the excited state dipole moments of bischromophoric dyes are about 10-25% higher in comparison to their monomeric equivalents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号