首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Thermochemical parameters of three C(2)H(5)O* radicals derived from ethanol were reevaluated using coupled-cluster theory CCSD(T) calculations, with the aug-cc-pVnZ (n = D, T, Q) basis sets, that allow the CC energies to be extrapolated at the CBS limit. Theoretical results obtained for methanol and two CH(3)O* radicals were found to agree within +/-0.5 kcal/mol with the experiment values. A set of consistent values was determined for ethanol and its radicals: (a) heats of formation (298 K) DeltaHf(C(2)H(5)OH) = -56.4 +/- 0.8 kcal/mol (exptl: -56.21 +/- 0.12 kcal/mol), DeltaHf(CH(3)C*HOH) = -13.1 +/- 0.8 kcal/mol, DeltaHf(C*H(2)CH(2)OH) = -6.2 +/- 0.8 kcal/mol, and DeltaHf(CH(3)CH(2)O*) = -2.7 +/- 0.8 kcal/mol; (b) bond dissociation energies (BDEs) of ethanol (0 K) BDE(CH(3)CHOH-H) = 93.9 +/- 0.8 kcal/mol, BDE(CH(2)CH(2)OH-H) = 100.6 +/- 0.8 kcal/mol, and BDE(CH(3)CH(2)O-H) = 104.5 +/- 0.8 kcal/mol. The present results support the experimental ionization energies and electron affinities of the radicals, and appearance energy of (CH(3)CHOH+) cation. Beta-C-C bond scission in the ethoxy radical, CH(3)CH2O*, leading to the formation of C*H3 and CH(2)=O, is characterized by a C-C bond energy of 9.6 kcal/mol at 0 K, a zero-point-corrected energy barrier of E0++ = 17.2 kcal/mol, an activation energy of Ea = 18.0 kcal/mol and a high-pressure thermal rate coefficient of k(infinity)(298 K) = 3.9 s(-1), including a tunneling correction. The latter value is in excellent agreement with the value of 5.2 s(-1) from the most recent experimental kinetic data. Using RRKM theory, we obtain a general rate expression of k(T,p) = 1.26 x 10(9)p(0.793) exp(-15.5/RT) s(-1) in the temperature range (T) from 198 to 1998 K and pressure range (p) from 0.1 to 8360.1 Torr with N2 as the collision partners, where k(298 K, 760 Torr) = 2.7 s(-1), without tunneling and k = 3.2 s(-1) with the tunneling correction. Evidence is provided that heavy atom tunneling can play a role in the rate constant for beta-C-C bond scission in alkoxy radicals.  相似文献   

2.
Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: DeltaH0r(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and DeltaH0t(CH3CH,3A' ') = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +/-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as DeltaES-T,vert = 104.1 and DeltaES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +/- 0.3 and 66.4 +/- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +/- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is DeltaES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is DeltaH0tC2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by approximately 7 to 8 kcal/mol. For vinylidene, we predict DeltaH0t(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +/- 4.0), DeltaH0t(H2CC,3B2) = 146.2 at 298 K, and an energy gap DeltaES-T-adia(H2CC) = 47.7 kcal/mol.  相似文献   

3.
Kinetics on the cheletropic addition of sulfur dioxide to (E)-1-methoxybutadiene (1) to give the corresponding sulfolene 2 (2-methoxy-2,5-dihydrothiophene-1,1-dioxide) gave the rate law d[2]/dt = k[1][SO(2)](x)() with x = 2.6 +/- 0.2 at 198 K. Under these conditions, no sultine 3 [(2RS,6RS)-6-methoxy-3,6-dihydro-1,2-oxathiin-2-oxide] resulting from a hetero-Diels-Alder addition was observed, and the cheletropic elimination 2 --> 1 + SO(2) did not occur. Ab initio and DFT quantum calculations confirmed that the cheletropic addition 1 + SO(2) --> 2 follows two parallel mechanisms, one involving two molecules of SO(2) and the transition structure with DeltaG(++) = 18.2 +/- 0.2 kcal/mol at 198 K (exptl); 22.5-22.7 kcal/mol [B3LYP/6-31G(d,p)], the other one involving three molecules of SO(2) with DeltaG(++) = 18.9 +/- 0.1 kcal/mol at 198 K (exptl); 19.7 kcal/mol [B3LYP/6-31G(d,p)]. The mechanism involving only one molecule of SO(2) in the transition structure requires a higher activation energy, DeltaG(++) = 25.2 kcal/mol [B3LYP/6-31G(d,p)]. Comparison of the geometries and energetics of the structures involved into the 1 + SO(2) --> 2, 3 and 1 + 2SO(2) --> 2, 3 + SO(2) reactions obtained by ab initio and DFT methods suggest that the latter calculation techniques can be used to study the cycloadditions of sulfur dioxide. The calculations predict that the hetero-Diels-Alder addition 1 + SO(2) --> 3 also prefers a mechanism in which three molecules of SO(2) are involved in the cycloaddition transition structure. At 198 K and in SO(2) solutions, the entropy cost (TDeltaS(++)) is overcompensated by the specific solvation by SO(2) in the transition structures of both the cheletropic and hetero-Diels-Alder reactions of (E)-1-methoxybutadiene with SO(2).  相似文献   

4.
Through the use of the Active Thermochemical Tables approach, the best currently available enthalpy of formation of HO2 has been obtained as delta(f)H(o)298 (HO2) = 2.94 +/- 0.06 kcal mol(-1) (3.64 +/- 0.06 kcal mol(-1) at 0 K). The related enthalpy of formation of the positive ion, HO2+, within the stationary electron convention is delta(f)H(o)298 (HO2+) = 264.71 +/- 0.14 kcal mol(-1) (265.41 +/- 0.14 kcal mol(-1) at 0 K), while that for the negative ion, HO2- (within the same convention), is delta(f)H(o)298 (HO2-) = -21.86 +/- 0.11 kcal mol(-1) (-21.22 +/- 0.11 kcal mol(-1) at 0 K). The related proton affinity of molecular oxygen is PA298(O2) = 100.98 +/- 0.14 kcal mol(-1) (99.81 +/- 0.14 kcal mol(-1) at 0 K), while the gas-phase acidity of H2O2 is delta(acid)G(o)298 (H2O2) = 369.08 +/- 0.11 kcal mol(-1), with the corresponding enthalpy of deprotonation of H2O2 of delta(acid)H(o)298 (H2O2) = 376.27 +/- 0.11 kcal mol(-1) (375.02 +/- 0.11 kcal mol(-1) at 0 K). In addition, a further improved enthalpy of formation of OH is briefly outlined, delta(f)H(o)298 (OH) = 8.93 +/- 0.03 kcal mol(-1) (8.87 +/- 0.03 kcal mol(-1) at 0 K), together with new and more accurate enthalpies of formation of NO, delta(f)H(o)298 (NO) = 21.76 +/- 0.02 kcal mol(-1) (21.64 +/- 0.02 kcal mol(-1) at 0 K) and NO2, delta(f)H(o)298 (NO2) = 8.12 +/- 0.02 kcal mol(-1) (8.79 +/- 0.02 kcal mol(-1) at 0 K), as well as H(2)O(2) in the gas phase, delta(f)H(o)298 (H2O2) = -32.45 +/- 0.04 kcal mol(-1) (-31.01 +/- 0.04 kcal mol(-1) at 0 K). The new thermochemistry of HO2, together with other arguments given in the present work, suggests that the previous equilibrium constant for NO + HO2 --> OH + NO2 was underestimated by a factor of approximately 2, implicating that the OH + NO2 rate was overestimated by the same factor. This point is experimentally explored in the companion paper of Srinivasan et al. (next paper in this issue).  相似文献   

5.
The reactions of SO3 with H, O, and OH radicals have been investigated by ab initio calculations. For the SO3 + H reaction (1), the lowest energy pathway involves initial formation of HSO3 and rearrangement to HOSO2, followed by dissociation to OH + SO2. The reaction is fast, with k(1) = 8.4 x 10(9)T(1.22) exp(-13.9 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (700-2000 K). The SO3 + O --> SO2 + O2 reaction (2) may proceed on both the triplet and singlet surfaces, but due to a high barrier the reaction is predicted to be slow. The rate constant can be described as k(2) = 2.8 x 10(4)T(2.57) exp(-122.3 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) for T > 1000 K. The SO3 + OH reaction to form SO2 + HO2 (3) proceeds by direct abstraction but is comparatively slow, with k(3) = 4.8 x 10(4)T(2.46) exp(-114.1 kJ mol(-) 1/RT) cm(3) mol(-1) s(-1) (800-2000 K). The revised rate constants and detailed reaction mechanism are consistent with experimental data from batch reactors, flow reactors, and laminar flames on oxidation of SO2 to SO3. The SO3 + O reaction is found to be insignificant during most conditions of interest; even in lean flames, SO3 + H is the major consumption reaction for SO3.  相似文献   

6.
We have calculated the thermochemical parameters for the reactions H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O and H(2)SO(4) + NH(3) <--> H(2)SO(4).NH(3) using the B3LYP and PW91 functionals, MP2 perturbation theory and four different basis sets. Different methods and basis sets yield very different results with respect to, for example, the reaction free energies. A large part, but not all, of these differences are caused by basis set superposition error (BSSE), which is on the order of 1-3 kcal mol(-1) for most method/basis set combinations used in previous studies. Complete basis set extrapolation (CBS) calculations using the cc-pV(X+d)Z and aug-cc-pV(X+d)Z basis sets (with X = D, T, Q) at the B3LYP level indicate that if BSSE errors of less than 0.2 kcal mol(-1) are desired in uncorrected calculations, basis sets of at least aug-cc-pV(T+d)Z quality should be used. The use of additional augmented basis functions is also shown to be important, as the BSSE error is significant for the nonaugmented basis sets even at the quadruple-zeta level. The effect of anharmonic corrections to the zero-point energies and thermal contributions to the free energy are shown to be around 0.4 kcal mol(-1) for the H(2)SO(4).H(2)O cluster at 298 K. Single-point CCSD(T) calculations for the H(2)SO(4).H(2)O cluster also indicate that B3LYP and MP2 calculations reproduce the CCSD(T) energies well, whereas the PW91 results are significantly overbinding. However, basis-set limit extrapolations at the CCSD(T) level indicate that the B3LYP binding energies are too low by ca. 1-2 kcal/mol. This probably explains the difference of about 2 kcal mol(-1) for the free energy of the H(2)SO(4) + H(2)O <--> H(2)SO(4).H(2)O reaction between the counterpoise-corrected B3LYP calculations with large basis sets and the diffusion-based experimental values of S. M. Ball, D. R. Hanson, F. L Eisele and P. H. McMurry (J. Phys. Chem. A. 2000, 104, 1715). Topological analysis of the electronic charge density based on the quantum theory of atoms in molecules (QTAIM) shows that different method/basis set combinations lead to qualitatively different bonding patterns for the H(2)SO(4).NH(3) cluster. Using QTAIM analysis, we have also defined a proton transfer degree parameter which may be useful in further studies.  相似文献   

7.
The potential energy surface for the CH(2)O + ClO reaction was calculated at the QCISD(T)/6-311G(2d,2p)//B3LYP/6-311G(d,p) level of theory. The rate constants for the lower barrier reaction channels producing HOCl + HCO, H atom, OCH(2)OCl, cis-HC(O)OCl and trans-HC(O)OCl have been calculated by TST and multichannel RRKM theory. Over the temperature range of 200-2000 K, the overall rate constants were k(200-2000K) = 1.19 x 10(-13)T(0.79) exp(-3000.00/T). At 250 K, the calculated overall rate constant was 5.80 x 10(-17) cm(3) molecule(-1) s(-1), which was in good agreement with the experimental upper limit data. The calculated results demonstrated that the formation of HOCl + HCO was the dominant reaction channel and was exothermic by 9.7 kcal/mol with a barrier of 5.0 kcal/mol. When it retrograded to the reactants CH(2)O + ClO, an energy barrier of 14.7 kcal/mol is required. Furthermore, when HOCl decomposed into H + ClO, the energy required was 93.3 kcal/mol. These results suggest that the decomposition in both the forward and backward directions for HOCl would be difficult in the ground electronic state.  相似文献   

8.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

9.
Low-temperature ozonation (-78 degrees C) of 1,3-dioxolanes 1a-1f and 1,3-dioxanes 1g and h in acetone-d6, methyl acetate, and tert-butyl methyl ether produced both the corresponding hemiortho esters (2a-h, ROH) and acetal hydrotrioxides (3a-h, ROOOH) in molar ratios ROH/ROOOH ranging from 0.5 to 23. Both types of intermediates were fully characterized by 1H, 13C, and 17O NMR spectroscopy. DFT calculations suggest that ozone abstracts a hydride ion from 1 to form an ion pair, R+ -OOOH, which subsequently collapses to either the corresponding hemiortho ester (ROH) or the acetal hydrotrioxide (ROOOH). Hemiortho esters decomposed quantitatively into the corresponding hydroxy esters. Experimentally obtained activation parameters for the decomposition of 2a (E(a) = 13.5 +/- 1.0 kcal/mol, log A = 8.3 +/- 1.0) are in accord with a highly oriented transition state involving, according to B3LYP calculations (deltaH(a)(298) = 13.2 kcal/mol), two molecules of water as a bifunctional catalyst. This mechanism is also supported by the magnitude of the solvent isotope effect for the decomposition of 2e, i.e., k(H2O)/k(D2O) = 4.6 +/- 1.2. Besides the hydroxy esters and oxygen (3O2/1O2), dihydrogen trioxide (HOOOH) was formed in the decomposition of most of the acetal hydrotrioxides (ROOOH) investigated. The activation parameters for the decomposition of the hydrotrioxides 3a-e in various solvents were E(a) = 20 +/- 2 kcal/mol, log A = 13.5 +/- 1.5. Several mechanistic possibilities for the decomposition of ROOOH were tested by experiment and theory. The formation of the hydroxy esters and oxygen could be explained by the intramolecular transfer of the proton to form the hydroxy ester. The assistance of water in the decomposition of ROOOH to form the hydroxy esters, either directly or via hemiortho esters, was also investigated. According to DFT calculations, the formation of a hydroxy ester via hemiortho ester is energetically more favorable (deltaH(a)(298) = 14.5 kcal/mol), again due to the catalytic effect of two water molecules. HOOOH generation requires the involvement of water in the decomposition of ROOOH where the direct formation out of ROOOH is energetically preferred. The energy for a reaction between two molecules of water and singlet oxygen (delta1O2) is too high to occur in solution.  相似文献   

10.
Various new thermally air- and water-stable alkyl and aryl analogues of (acac-O,O)2Ir(R)(L), R-Ir-L (acac-O,O = kappa2-O,O-acetylacetonate, -Ir- is the trans-(acac-O,O)2Ir(III) motif, R = CH3, C2H5, Ph, PhCH2CH2, L = Py) have been synthesized using the dinuclear complex [Ir(mu-acac-O,O,C3)-(acac-O,O)(acac-C3)]2, [acac-C-Ir]2, or acac-C-Ir-H2O. The dinuclear Ir (III) complexes, [Ir(mu-acac-O,O,C3)-(acac-O,O)(R)]2 (R = alkyl), show fluxional behavior with a five-coordinate, 16 electron complex by a dissociative pathway. The pyridine adducts, R-Ir-Py, undergo degenerate Py exchange via a dissociative mechanism with activation parameters for Ph-Ir-Py (deltaH++ = 22.8 +/- 0.5 kcal/mol; deltaS++ = 8.4 +/- 1.6 eu; deltaG++298 K) = 20.3 +/- 1.0 kcal/mol) and CH3-Ir-Py (deltaH++ = 19.9 +/- 1.4 kcal/mol; deltaS++ = 4.4 +/- 5.5 eu; deltaG++298 K) = 18.6 +/- 0.5 kcal/mol). The trans complex, Ph-Ir-Py, undergoes quantitatively trans-cis isomerization to generate cis-Ph-Ir-Py on heating. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to generate Ph-Ir-Py and RH. The activation parameters (deltaS++ =11.5 +/- 3.0 eu; deltaH++ = 41.1 +/- 1.1 kcal/mol; deltaG++298 K = 37.7 +/- 1.0 kcal/mol) for CH activation were obtained using CH3-Ir-Py as starting material at a constant ratio of [Py]/[C6D6] = 0.045. Overall the CH activation reaction with R-Ir-Py has been shown to proceed via four key steps: (A) pre-equilibrium loss of pyridine that generates a trans-five-coordinate, square pyramidal intermediate; (B) unimolecular, isomerization of the trans-five-coordinate to generate a cis-five-coordinate intermediate, cis-R-Ir- square; (C) rate-determining coordination of this species to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope effects on the CH activation with mixtures of C6H6/C6D6 (KIE = 1) and with 1,3,5-C6H3D3 (KIE approximately 3.2 at 110 degrees C) are consistent with this reaction mechanism.  相似文献   

11.
The binding energies of the first 5 H2O molecules to c-C3H3+ were determined by equilibrium measurements. The measured binding energies of the hydrated clusters of 9-12 kcal/mol are typical of carbon-based CH+...X hydrogen bonds. The ion solvation with the more polar CH3CN molecules results in stronger bonds consistent with the increased ion-dipole interaction. Ab initio calculations show that the lowest energy isomer of the c-C3H3+(H2O)4 cluster consists of a cyclic water tetramer interacting with the c-C3H3+ ion, which suggests the presence of orientational restraint of the water molecules consistent with the observed large entropy loss. The c-C3H3+ ion is deprotonated by 3 or more H2O molecules, driven energetically by the association of the solvent molecules to form strongly hydrogen bonded (H2O)nH+ clusters. The kinetics of the associative proton transfer (APT) reaction C3H3+ + nH2O --> (H2O)nH+ + C3H2* exhibits an unusually steep negative temperature coefficient of k = cT(-63+/-4) (or activation energy of -37 +/- 1 kcal mol(-1)). The behavior of the C3H3+/water system is exactly analogous to the benzene+*/water system, suggesting that the mechanism, kinetics and large negative temperature coefficients may be general to multibody APT reactions. These reactions can become fast at low temperatures, allowing ionized polycyclic aromatics to initiate ice formation in cold astrochemical environments.  相似文献   

12.
The gas phase reactions of CH3O2 + CH3O2, HO2 + HO2, and CH3O2 + HO2 in the presence of water vapor have been studied at temperatures between 263 and 303 K using laser flash photolysis coupled with UV time-resolved absorption detection at 220 and 260 nm. Water vapor concentrations were quantified using tunable diode laser spectroscopy operating in the mid-IR. The HO2 self-reaction rate constant is significantly enhanced by water vapor, consistent with what others have reported, whereas the CH3O2 self-reaction and the cross-reaction (CH3O2 + HO2) rate constants are nearly unaffected. The enhancement in the HO2 self-reaction rate coefficient occurs because of the formation of a strongly bound (6.9 kcal mol(-1)) HO2 x H2O complex during the reaction mechanism where the H2O acts as an energy chaperone. The nominal impact of water vapor on the CH3O2 self-reaction rate coefficient is consistent with recent high level ab initio calculations that predict a weakly bound CH3O2 x H2O complex (2.3 kcal mol(-1)). The smaller binding energy of the CH3O2 x H2O complex does not favor its formation and consequent participation in the methyl peroxy self-reaction mechanism.  相似文献   

13.
The heats of formation of saturated and unsaturated diaminocarbenes (imadazol(in)-2-ylidenes) have been calculated by using high levels of ab initio electronic structure theory. The calculations were done at the coupled cluster level through noniterative triple excitations with augmented correlation consistent basis sets up through quadruple. In addition, four other corrections were applied to the frozen core atomization energies: (1) a zero point vibrational correction; (2) a core/valence correlation correction; (3) a scalar relativistic correction; (4) a first-order atomic spin-orbit correction. The value of DeltaHf( 298) for the unsaturated carbene 1 is calculated to be 56.4 kcal/mol. The value of DeltaHf( 298) for the unsaturated triplet carbene (3)1 is calculated to be 142.8 kcal/mol, giving a singlet-triplet splitting of 86.4 kcal/mol. Addition of a proton to 1 forms 3 with DeltaHf( 298)(3) = 171.6 kcal/mol with a proton affinity for 1 of 250.5 kcal/mol at 298 K. Addition of a hydrogen atom to 1 forms 4 with DeltaHf( 298)(4) = 72.7 kcal/mol and a C-H bond energy of 35.8 kcal/mol at 298 K. Addition of H- to 1 gives 5 with DeltaHf( 298)(5) = 81.2 kcal/mol and 5 is not stable with respect to loss of an electron to form 4. Addition of H2 to the carbene center forms 6 with DeltaHf( 298)(6) = 41.5 kcal/mol and a heat of hydrogenation at 298 K of -14.9 kcal/mol. The value of DeltaHf( 298) for the saturated carbene 7 (obtained by adding H2 to the C=C bond of 1) is 47.4 kcal/mol. Hydrogenation of 7 to form the fully saturated imidazolidine, 8, gives DeltaHf( 298)(8) = 14.8 kcal/mol and a heat of hydrogenation at 298 K of -32.6 kcal/mol. The estimated error bars for the calculated heats of formation are +/-1.0 kcal/mol.  相似文献   

14.
Thermochemical properties of CHFO and CF 2O and their derivatives were calculated by using coupled-cluster theory (U)CCSD(T) calculations with the aug-cc-pV nZ ( n = D, T, Q, 5) basis sets extrapolated to the complete basis set limit with additional corrections. The predicted properties include the following. Enthalpies of formation (298 K, kcal/mol): Delta H f (CF 2O) = -144.7, Delta H f(CHFO) = -91.1, Delta H f (CFO (*)) = -41.6. Bond dissociation energy (0 K, kcal/mol): BDE(CFO-F) = 120.7, BDE(CHO-F) = 119.1, BDE(CFO-H) = 100.2. Ionization potential (eV): IP 1(CF 2O) = 13.04, IP 2(CF 2O) = 14.09, IP 1(CHFO) = 12.41, IP 2(CHFO) = 13.99, IP 1(CFO (*)) = 9.34. Proton affinity (298 K, kcal/mol), PA O(CF 2O) = 148.8, PA O(CHFO) = 156.7, PA F(CHFO) = 154.5 kcal/mol. Electron affinity: EA(CFO (*)) = 2.38 eV. Triplet-singlet separation gap (eV): Delta E T1-S0(CF 2O) = 4.47, Delta E T1-S0(CHFO) = 4.36. Triplet-triplet transition energy (eV): Delta E T2-T1(CF 2O) = 0.44. The new calculated values contribute to solving some persistent discrepancies in the literature. The effects of F-atoms on thermochemical parameters are not linearly additive, and the changes are largely dominated by the first F-substitution. On the basis of the calculated proton affinities of CF 2O and CF 3OH, the nucleophilicities of the oxygen atoms are, within computational errors, the same in both compounds.  相似文献   

15.
The pyrolysis of toluene, the simplest methyl-substituted aromatic molecule, has been studied behind reflected shock waves using a single pulse shock tube. Experiments were performed at nominal high pressures of 27 and 45 bar and spanning a wide temperature range from 1200 to 1900 K. A variety of stable species, ranging from small hydrocarbons to single ring aromatics (principal soot precursors such as phenylacetylene and indene) were sampled from the shock tube and analyzed using standard gas chromatographic techniques. A detailed chemical kinetic model with 262 reactions and 87 species was assembled to simulate the stable species profiles (specifically toluene, benzene and methane) from the current high-pressure pyrolysis data sets and shock tube-atomic resonance absorption spectrometry (ARAS) H atom profiles obtained from prior toluene pyrolysis experiments performed under similar high-temperature conditions and lower pressures from 1.5 to 8 bar. The primary steps in toluene pyrolysis represent the most sensitive and dominant reactions in the model. Consequently, in the absence of unambiguous direct experimental measurements, we have utilized recent high level theoretical estimates of the barrierless association rate coefficients for these primary reactions, C6H5 + CH3 --> C6H5CH3 (1a) and C6H5CH2 + H --> C6H5CH3 (1b) in the detailed chemical kinetic model. The available data sets can be successfully reconciled with revised values for deltaH0f(298K)(C6H5CH2) = 51.5 +/- 1.0 kcal/mol and deltaH0f(298K)(C6H5) = 78.6 +/- 1.0 kcal/mol that translate to primary dissociation rate constants, reverse of 1a and 1b, represented by k(-1a,infinity) = (4.62 x 10(25))T(-2.53)exp[-104.5 x 10(3)/RT] s(-1) and k(-1b,infinity) = (1.524 x 10(16))T(-0.04)exp[-93.5 x 10(3)/RT] s(-1) (R in units of cal/(mol K)). These high-pressure limiting rate constants suggest high-temperature branching ratios for the primary steps that vary from 0.39 to 0.52 over the temperature range 1200-1800 K.  相似文献   

16.
The standard molar enthalpies of formation of chloro-, bromo-, and iodoacetic acids in the crystalline state, at 298.15 K, were determined as deltafH(o)m(C2H3O2Cl, cr alpha)=-(509.74+/- 0.49) kJ x mol(-1), deltafH(o)m(C2H3O2Br, cr I)-(466.98 +/- 1.08) kJ x mol(-1), and deltafH(o)m (C2H3O2I, cr)=-(415.44 +/- 1.53) kJ x mol(-1), respectively, by rotating-bomb combustion calorimetry. Vapor pressure versus temperature measurements by the Knudsen effusion method led to deltasubH(o)m(C2H3O2Cl)=(82.19 +/- 0.92) kJ x mol(-1), deltasubH(o)m(C2H3O2Br)=(83.50 +/- 2.95) kJ x mol(-1), and deltasubH(o)m-(C2H3O2I) = (86.47 +/- 1.02) kJ x mol(-1), at 298.15 K. From the obtained deltafH(o)m(cr) and deltasubH(o)m values it was possible to derive deltafH(o)m(C2H3O2Cl, g)=-(427.55 +/- 1.04) kJ x mol(-1), deltafH(o)m (C2H3O2Br, g)=-(383.48 +/- 3.14) kJ x mol(-1), and deltafH(o)m(C2H3O2I, g)=-(328.97 +/- 1.84) kJ x mol(-1). These data, taken with a published value of the enthalpy of formation of acetic acid, and the enthalpy of formation of the carboxymethyl radical, deltafH(o)m(CH2COOH, g)=-(238 +/- 2) kJ x mol(-1), obtained from density functional theory calculations, led to DHo(H-CH2COOH)=(412.8 +/- 3.2) kJ x mol(-1), DHo(Cl-CH2COOH)=(310.9 +/- 2.2) kJ x mol(-1), DHo(Br-CH2COOH)=(257.4 +/- 3.7) kJ x mol(-1), and DHo(I-CH2COOH)=(197.8 +/- 2.7) kJ x mol(-1). A discussion of the C-X bonding energetics in XCH2COOH, CH3X, C2H5X, C2H3X, and C6H5X (X=H, Cl, Br, I) compounds is presented.  相似文献   

17.
Photodissociation dynamics of phenol   总被引:1,自引:0,他引:1  
The photodissociation of phenol at 193 and 248 nm was studied using multimass ion-imaging techniques and step-scan time-resolved Fourier-transform spectroscopy. The major dissociation channels at 193 nm include cleavage of the OH bond, elimination of CO, and elimination of H(2)O. Only the former two channels are observed at 248 nm. The translational energy distribution shows that H-atom elimination occurs in both the electronically excited and ground states, but elimination of CO or H(2)O occurs in the electronic ground state. Rotationally resolved emission spectra of CO (1 相似文献   

18.
The formation constants of UO2SO4 (aq), UO2(SO4)2(2-), and UO2(SO4)3(4-) were measured in aqueous solutions from 10 to 75 degrees C by time-resolved laser-induced fluorescence spectroscopy (TRLFS). A constant enthalpy of reaction approach was satisfactorily used to fit the thermodynamic parameters of stepwise complex formation reactions in a 0.1 M Na(+) ionic medium: log 10 K 1(25 degrees C) = 2.45 +/- 0.05, Delta r H1 = 29.1 +/- 4.0 kJ x mol(-1), log10 K2(25 degrees C) = 1.03 +/- 0.04, and Delta r H2 = 16.6 +/- 4.5 kJ x mol(-1). While the enthalpy of the UO2(SO4)2(2-) formation reaction is in good agreement with calorimetric data, that for UO2SO4 (aq) is higher than other values by a few kilojoules per mole. Incomplete knowledge of the speciation may have led to an underestimation of Delta r H1 in previous calorimetric studies. In fact, one of the published calorimetric determinations of Delta r H1 is here supported by the TRLFS results only when reinterpreted with a more correct equilibrium constant value, which shifts the fitted Delta r H1 value up by 9 kJ x mol(-1). UO2(SO 4) 3 (4-) was evidenced in a 3 M Na (+) ionic medium: log10 K3(25 degrees C) = 0.76 +/- 0.20 and Delta r H3 = 11 +/- 8 kJ x mol(-1) were obtained. The fluorescence features of the sulfate complexes were observed to depend on the ionic conditions. Changes in the coordination mode (mono- and bidentate) of the sulfate ligands may explain these observations, in line with recent structural data.  相似文献   

19.
The solvent dependence of the 13C NMR spectra of chloroacetone (CA), bromoacetone (BA) and iodoacetone (IA) are reported and the 3J(CH) couplings analysed using ab initio calculations and solvation theory. In CA the energy difference (E(cis) - E(gauche)) between the cis (Cl-C-C=O 0 degrees) and gauche (Cl-C-C=O 155 degrees) conformers is 1.7 kcal mol(-1) in the vapour, decreasing to 0.8 kcal mol(-1) in CCl4 solution and to -1.0 kcal mol(-1) in the pure liquid. The conformational equilibrium, in BA, is between the more polar cis (Br-C-C=O 0 degrees) and gauche (Br-C-C=O 132 degrees) conformations. The energy difference (E(cis) - E(gauche)) is 1.8 kcal mol(-1) in the vapour, decreasing to 0.9 kcal mol(-1) in CCl4 solution and to -0.4 kcal mol(-1) in the pure liquid. The energy difference (E(cis) - E(gauche)), in IA, between the cis (I-C-C=O 0 degrees) and gauche (I-C-C=O 104 degrees) conformers is 1.1 kcal mol(-1) in the vapour phase, decreasing to 0.5 kcal mol(-1) in CCl4 solution and to -0.5 kcal mol(-1) in the pure liquid. The vapour state energy difference for BA [1.4 kcal mol(-1) at B3LYP/6-311++G(d,p)] and for IA [1.6 kcal mol(-1) at B3LYP/6-311++G(d,p)/LANL2DZ)] are in very good agreement with the above values. For CA the agreement is also satisfactory [1.4 kcal mol(-1) at B3LYP/6-311++G(d,p)].  相似文献   

20.
The 351.1 nm photoelectron spectra of the N-methyl-5-pyrazolide anion and the N-methyl-5-imidazolide anion are reported. The photoelectron spectra of both isomers display extended vibrational progressions in the X2A' ground states of the corresponding radicals that are well reproduced by Franck-Condon simulations, based on the results of B3LYP/6-311++G(d,p) calculations. The electron affinities of the N-methyl-5-pyrazolyl radical and the N-methyl-5-imidazolyl radical are 2.054 +/- 0.006 eV and 1.987 +/- 0.008 eV, respectively. Broad vibronic features of the A(2)A' ' states are also observed in the spectra. The gas-phase acidities of N-methylpyrazole and N-methylimidazole are determined from measurements of proton-transfer rate constants using a flowing afterglow-selected ion flow tube instrument. The acidity of N-methylpyrazole is measured to be Delta(acid)G(298) = 376.9 +/- 0.7 kcal mol(-1) and Delta(acid)H(298) = 384.0 +/- 0.7 kcal mol(-1), whereas the acidity of N-methylimidazole is determined to be Delta(acid)G(298) = 380.2 +/- 1.0 kcal mol(-1) and Delta(acid)H(298)= 388.1 +/- 1.0 kcal mol(-1). The gas-phase acidities are combined with the electron affinities in a negative ion thermochemical cycle to determine the C5-H bond dissociation energies, D(0)(C5-H, N-methylpyrazole) = 116.4 +/- 0.7 kcal mol(-1) and D(0)(C5-H, N-methylimidazole) = 119.0 +/- 1.0 kcal mol(-1). The bond strengths reported here are consistent with previously reported bond strengths of pyrazole and imidazole; however, the error bars are significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号