首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Very accurate non-Born-Oppenheimer variational calculations of the ground state of e(+)LiH have been performed using explicitly correlated Gaussian functions with preexponential factors dependent on powers of the internuclear distance. In order to determine the positron detachment energy of e(+)LiH and the dissociation energy corresponding to the e(+)LiH fragmentation into HPs and Li(+) we also calculated non-BO energies of HPs, LiH, and Li(+). For all the systems the calculations provided the lowest ever-reported variational upper-bounds to the ground state energies. Annihilation rates of HPs and e(+)LiH were also computed. The dissociation energy of e(+)LiH into HPs and Li(+) was determined to be 0.036 548 hartree.  相似文献   

2.
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments.  相似文献   

3.
Ab initio calculations were performed for LiH using a pseudopotential approach with CPP corrections and huge basis sets on both atoms. A wide range of 1,3Σ+ electronic adiabatic states have been investigated, from the ground state up to those dissociating into Li(5p)+H. Permanent and transition electric dipole moments are also considered for the first few excited states. Comparison with experiments and recent all-electron calculations, reveals an excellent global accuracy, only the bottom of the ground state being better described by all-electron approaches. Using almost identical basis sets, coupled cluster all-electron calculations are performed for the ground states of LiH+, LiH and LiH. High care has been given to the correct relative position of the asymptotes, allowing for this rather complete set of accurate ab initio data to be useful for further molecular physics studies.  相似文献   

4.
Explicitly correlated Gaussian functions have been used to perform very accurate variational calculations for the ground states of (7)Li and (7)Li(-). The nuclear motion has been explicitly included in the calculations (i.e., they have been done without assuming the Born-Oppenheimer (BO) approximation). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. This led to a noticeable improvement of the previously determined variational upper bound to the nonrelativistic energy of Li(-). The Li energy obtained in the calculations matches those of the most accurate results obtained with Hylleraas functions. The finite-mass (non-BO) wave functions were used to calculate the alpha(2) relativistic corrections (alpha=1c). With those corrections and the alpha(3) and alpha(4) corrections taken from Pachucki and Komasa [J. Chem. Phys. 125, 204304 (2006)], the electron affinity (EA) of (7)Li was determined. It agrees very well with the most recent experimental EA.  相似文献   

5.
We recently presented very accurate calculations of the fundamental vibrational frequency of the (7)LiH(+) and (3)He(4)He(+) ions [Stanke et al. Phys. Rev. A 79, 060501(R) (2009)] performed without the Born-Oppenheimer approximation and included leading relativistic corrections. The accuracy of those calculations was estimated to be of the order of 0.06 cm(-1). In the present work we extend the calculations to the remaining pure vibrational states of (7)LiH(+) and similarly accurate results are generated. They may lead to the experimental search for still unidentified lines corresponding to those transitions.  相似文献   

6.
Expanding the wave functions of the ground and excited states of HD(+) (or pde) in terms of spherically symmetric explicitly correlated Gaussian functions with preexponential multipliers consisting of powers of the internuclear distance, and using the variational method, we performed very accurate nonadiabatic calculations of all bound states of this system corresponding to the zero total angular momentum quantum number (vibrational states; v=0-22). The total and the transition energies obtained agree with the best available calculations. For each state we computed the expectation values of the d-p, d-e, and p-e interparticle distances. This is the first time these quantities were computed for HD(+) using rigorous nonadiabatic wave functions. While up to the v=20 state some asymmetry is showing in the d-e and p-e distances, for v=21 and v=22 we observe a complete breakdown of the Born-Oppenheimer approximation and localization of the electron almost entirely at the deuteron.  相似文献   

7.
Quasi-classical trajectory calculations have been performed on the adiabatically allowed reactions taking place on the two lowest-lying electronic states of the LiH2+ system, using the ab initio potential energy surfaces of Martinazzo et al. (J. Chem. Phys., 2003, 119, 11 241). These reactions comprise: (i) the exoergic H2 and H2+ formation occurring through LiH+ + H and LiH + H+ collisions in the ground and in the first electronically excited state, respectively; (ii) the endoergic (ground state) LiH+ dissociation induced by collisions with H atoms; and (iii) the endoergic (excited state) Li + H2+ --> LiH + H+ reaction. The topic is of relevance for a better understanding of the lithium chemistry in the early universe. Thermal rate constants for the above reactions have been computed in the temperature range 10-5000 K and found in reasonably good agreement with estimates based on the capture model.  相似文献   

8.
The excited D (1)Sigma(+) electronic state of (7)LiH has been observed up to near its dissociation limit by a pulsed optical-optical double resonance fluorescence depletion spectroscopic technique. An extensive vibronic calculation has been performed with a diabatic approach with purely potential couplings involving a set of eight diabatic states of (1)Sigma(+) symmetry, corresponding to seven neutral states and one ionic state. Twenty-six new vibrational levels have been observed. Both the derived vibrational energy spacings and the vibronic ones are similarly irregular. The observed spectral linewidths and vibronic resonance widths are found to vary similarly with increasing energy. Observed asymmetric spectral lineshapes may be attributed to the strong radial couplings between the discrete levels of the D (1)Sigma(+) electronic state and the continuum states of the C (1)Sigma(+) electronic state. The mutual agreement between the spectral results and the vibronic results demonstrates that the D (1)Sigma(+) electronic state of (7)LiH is better characterized by the vibronic approach.  相似文献   

9.
In connection with the recent study of the ground electronic state of the LiH2(+) molecular ion (Kraemer, W. P.; Spirko, V. Chem. Phys. 2006, 330, 190), the adiabatic three-dimensional double-minimum potential enery surface of the first excited electronic state was evaluated, including its two lowest atom-diatom dissociation channels as well as the three-atom complete fragmentation asymptote. Applying the Sutcliffe-Tennyson Hamiltonian for triatomic molecules, the levels of all bound vibrational states and the levels of the states localized in the two energy minimum regions were separately determined. The validity of statistical methods such as the density of states approach and the nearest-neighbor level spacing distribution (NNSD) was tested for the light LiH2(+) ion. Special effort was put into investigating possible effects of a tunnelling motion across the proton-transfer barrier on the vibrational level pattern using the NNSD approach.  相似文献   

10.
In this work we report very accurate variational calculations of the complete pure vibrational spectrum of the D(2) molecule performed within the framework where the Born-Oppenheimer (BO) approximation is not assumed. After the elimination of the center-of-mass motion, D(2) becomes a three-particle problem in this framework. As the considered states correspond to the zero total angular momentum, their wave functions are expanded in terms of all-particle, one-center, spherically symmetric explicitly correlated Gaussian functions multiplied by even non-negative powers of the internuclear distance. The nonrelativistic energies of the states obtained in the non-BO calculations are corrected for the relativistic effects of the order of α(2) (where α = 1/c is the fine structure constant) calculated as expectation values of the operators representing these effects.  相似文献   

11.
Geometric structures and the energies for the ground and several excited electronic states of a sodium atom bound with one or two ammonia molecules are presented. All self consistent field (SCF) calculations are performed with extended basis sets. Geometry optimization and one electron properties have been performed within the SCF approximation. Excited states have been calculated with the multi-configuration SCF (MCSCF) technique. This system may be viewed as a precursor to solvation in a macroscopic system. The excited state calculations provide important information for spectroscopic studies of these complexes.  相似文献   

12.
Adiabatic and diabatic potential energy curves and the permanent and transition dipole moments of the low-lying electronic states of the LiRb molecule dissociating into Rb(5s, 5p, 4d, 6s, 6p, 5d, 7s, 6d) + Li(2s, 2p) have been investigated. The molecular calculations are performed with an ab initio approach based on nonempirical pseudopotentials for Rb(+) and Li(+) cores, parametrized l-dependent core polarization potentials and full configuration interaction calculations. The derived spectroscopic constants (R(e), D(e), T(e), ω(e), ω(e)x(e), and B(e)) of the ground state and lower excited states are in good agreement with the available theoretical works. However, the 8-10(1)Σ(+), 8-10(3)Σ(+), 6(1,3)Π, and 3(1,3)Δ excited states are studied for the first time. In addition, to the potential energy, accurate permanent and transition dipole moments have been determined for a wide interval of internuclear distances. The permanent dipole moment of LiRb has revealed ionic characters both relating to electron transfer and yielding Li(-)Rb(+) and Li(+)Rb(-) arrangements. The diabatic potential energy for the (1,3)Σ(+), (1,3)Π, and (1,3)Δ symmetries has been performed for this molecule for the first time. The diabatization method is based on variational effective Hamiltonian theory and effective metric, where the adiabatic and diabatic states are connected by an appropriate unitary transformation.  相似文献   

13.
Accurate calculations of the low-lying singlet and triplet electronic states of thiozone, S(3), have been carried out using large multireference configuration interaction wave functions. Cuts of the full potential energy surfaces along the stretching and bending coordinates have been presented, together with the vertical excitation spectra. The strong experimentally observed absorption around 395 nm is assigned to the 1 (1)B(2) state, which correlates to ground state products. Absorption at wavelengths shorter than 260 nm is predicted to lead to singlet excited state products, S(2) (a (1)Delta(g))+S((1)D). The spectroscopic properties of the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) electronic states of the S(2) radical have also been accurately characterized in this work. The investigations of the low-lying electronic states were accompanied by accurate ground state coupled cluster calculations of the thermochemistry of both S(2) and S(3) using large correlation consistent basis sets with corrections for core-valence correlation, scalar relativity, and atomic spin-orbit effects. Resulting values for D(0)(S(2)+S) and SigmaD(0) for S(3) are predicted to be 61.3 and 162.7 kcal/mol, respectively, with conservative uncertainties of +/-1 kcal/mol. Analogous calculations predict the C(2v)-D(3h) (open-cyclic) isomerization energy of S(3) to be 4.4+/-0.5 kcal/mol.  相似文献   

14.
High level ab initio calculations are performed on the ground electronic state of diatomic molecules MgAlk (Alk = Li, Na, K, Rb, Cs). Potential energy curves and dipole moment functions are determined making use of the single-reference unrestricted and restricted coupled-cluster methods with large basis sets. Basic spectroscopic properties of the ground electronic states are derived from ro-vibrational bound state calculations.  相似文献   

15.
We present very accurate calculations of the ground-state potential energy curve (PEC) of the LiH molecule performed with all-electron explicitly correlated Gaussian functions with shifted centers. The PEC is generated with the variational method involving simultaneous optimization of all Gaussians with an approach employing the analytical first derivatives of the energy with respect to the Gaussian nonlinear parameters (i.e., the exponents and the coordinates of the shifts). The LiH internuclear distance is varied between 1.8 and 40 bohrs. The absolute accuracy of the generated PEC is estimated as not exceeding 0.3 cm(-1). The adiabatic corrections for the four LiH isotopologues, i.e., (7)LiH, (6)LiH, (7)LiD, and (6)LiD, are also calculated and added to the LiH PEC. The aforementioned PECs are then used to calculate the vibrational energies for these systems. The maximum difference between the computed and the experimental vibrational transitions is smaller than 0.9 cm(-1). The contribution of the adiabatic correction to the dissociation energy of (7)LiH molecule is 10.7 cm(-1). The magnitude of this correction shows its importance in calculating the LiH spectroscopic constants. As the estimated contribution of the nonadiabatic and relativistic effects to the ground state dissociation energy is around 0.3 cm(-1), their inclusion in the LiH PEC calculation seems to be the next most important contribution to evaluate in order to improve the accuracy achieved in this work.  相似文献   

16.
A collection of 9089 spectroscopic LiH line positions, of widely varying precision, which sample 84.9% and 98.6% of the A and X state well depths, respectively, have been employed in a direct least-squares fit of the effective potential energy and Born-Oppenheimer breakdown functions for the two states. For the four isotopomers (6)LiH, (7)LiH, (6)LiD, and (7)LiD, the data comprise both pure rotational and vibration-rotational transitions within the ground state, as well as rotationally resolved transitions in the A-X system. Despite the unusual shape and associated anomalous properties of the A state potential, no special features or considerations were required in the direct potential fitting approach. The reduced standard deviation of the fit was close to unity, indicating that the quantum mechanical eigenvalues calculated from the fully analytical functions of the Hamiltonians of the two states, which are characterized by a total of only 53 fitted parameters, represent the line positions, on average, to within the estimated uncertainties. A quantum mechanical calculation of the molecular constants G(nu), B(nu), D(nu), H(nu), L(nu), M(nu), N(nu), and O(nu) from the fitted potential for the A state of (7)LiH confirms that the usual polynomial expansion in J(J+1) is an unsatisfactory representation for the rotational terms of the lowest vibrational levels.  相似文献   

17.
The Darwin and mass-velocity relativistic corrections have been calculated for all pure vibrational states of the H2 using the perturbation theory and very accurate variational wave functions obtained without assuming the Born-Oppenheimer (BO) approximation. Expansions in terms of explicitly correlated Gaussians with premultipliers in the form of even powers of the internuclear distance were used for the wave functions. With the inclusion of the two relativistic corrections to the non-BO energies the transition energies for the highest states agree more with the experimental results.  相似文献   

18.
The Pauli approach to account for the mass-velocity and Darwin relativistic corrections has been applied to the formalism for quantum mechanical molecular calculations that does not assume the Born-Oppenheimer (BO) approximation regarding separability of the electronic and nuclear motions in molecular systems. The corrections are determined using the first order perturbation theory and are derived for the non-BO wave function of a diatomic system expressed in terms of explicitly correlated Gaussian functions with premultipliers in the form of even powers of the internuclear distance. As a numerical example we used calculations of the transition energies for pure vibrational states of the HD(+) ion.  相似文献   

19.
Ab initio calculations on the ground and valence-excited states of the sulfur monofluoride radical have been performed using entirely uncontracted all-electron augmented correlation consistent polarized valence quintuple zeta basis sets and the internally contracted multireference configuration interaction with single and double excitations method and Davidson correction (+Q). Potential-energy curves of all valence electronic states and the spectroscopic constants of several bound states are fitted. It is the first time that the entire 27-omega states generated from the 12 valence lambda-S states which come from the S(3P(g)) and F(2P(u)) atomic states of SF radical have been studied theoretically. The effects of spin-orbit coupling and the avoided crossing rule between omega states of the same symmetry are analyzed. The calculated results reproduce well the available experimental values and predict the properties of several bound excited states that have never been observed in experiment. The transition properties of the dipole-allowed transitions from bound excited states to the ground state are predicted for the first time, including the transition dipole moments, the Franck-Condon factors, and the radiative lifetimes.  相似文献   

20.
Electronic states of the PbSi molecule up to 4 eV have been studied by carrying out ab initio based MRDCI calculations which include relativistic effective core potentials (RECPs) of both the atoms. The use of semicore RECPs of Pb produces better dissociation limits than the full-core one. However, the (3)P(0)-(3)P(1) splitting due to Pb is underestimated by about 4000 cm(-1). At least 25 bound electronic states of the Λ-S symmetry are predicted for PbSi. The computed zero-field-splitting in the ground state is about 544 cm(-1). A strong spin-orbit mixing changes the nature of the potential energy curves of many Ω states. The overall splitting among the spin components of A(3)Π is computed to be 4067 cm(-1). However, the largest spin-orbit splitting is reported for the (3)Δ state. A number of spin-allowed and spin-forbidden transitions are predicted. The partial radiative lifetime for the A(3)Π-X(3)Σ(-) transition is of the order of milliseconds. The computed bond energy in the ground state is 1.68 eV, considering the spin-orbit coupling. The vertical ionization energy for the ionization to the X(4)Σ(-) ground state of PbSi(+) is about 6.93 eV computed at the same level of calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号