首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Canonical ensemble molecular dynamics simulations of liquid methanol, modeled using a rigid-body, pair-additive potential, are used to compute static distributions and temporal correlations of tagged molecule potential energies as a means of characterizing the liquid state dynamics. The static distribution of tagged molecule potential energies shows a clear multimodal structure with three distinct peaks, similar to those observed previously in water and liquid silica. The multimodality is shown to originate from electrostatic effects, but not from local, hydrogen bond interactions. An interesting outcome of this study is the remarkable similarity in the tagged potential energy power spectra of methanol, water, and silica, despite the differences in the underlying interactions and the dimensionality of the network. All three liquids show a distinct multiple time scale (MTS) regime with a 1/ f (alpha) dependence with a clear positive correlation between the scaling exponent alpha and the diffusivity. The low-frequency limit of the MTS regime is determined by the frequency of crossover to white noise behavior which occurs at approximately 0.1 cm (-1) in the case of methanol under standard temperature and pressure conditions. The power spectral regime above 200 cm (-1) in all three systems is dominated by resonances due to localized vibrations, such as librations. The correlation between alpha and the diffusivity in all three liquids appears to be related to the strength of the coupling between the localized motions and the larger length/time scale network reorganizations. Thus, the time scales associated with network reorganization dynamics appear to be qualitatively similar in these systems, despite the fact that water and silica both display diffusional anomalies but methanol does not.  相似文献   

2.
Power spectra for various tagged particle quantities in bulk extended simple point charge model water [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987)] are shown to have a regime with 1f(alpha) dependence on frequency f with alpha lying between 1 and 1.5 if the dynamical changes in the particular observable are sensitive to the multiple time-scale behavior of the hydrogen-bond network. The variations in mobility associated with the diffusional anomaly are mirrored in the scaling exponent alpha associated with this multiple time-scale behavior, suggesting that monitoring of 1f(alpha) behavior is a simple and direct method for linking phenomena on three distinctive length and time scales: the local molecular environment, hydrogen-bond network reorganizations, and the diffusivity. Our results indicate that experimental studies of supercooled water to probe the density dependence of 1f(alpha) spectral features, or equivalent stretched exponential behavior in time-correlation functions, will be of interest.  相似文献   

3.
To understand the modifications of the hydrogen bond network of water by ionic solutes, power spectra as well as static distributions of the potential energies of tagged solvent molecules and solute ions have been computed from molecular dynamics simulations of aqueous NaCl solutions. The key power spectral features of interest are the presence of high-frequency peaks due to localized vibrational modes, the existence of a multiple time scale or 1/falpha frequency regime characteristic of networked liquids, and the frequency of crossover from 1/falpha type behavior to white noise. Hydrophilic solutes, such as the sodium cation and the chloride anion, are shown to mirror the multiple time scale behavior of the hydrogen bond network fluctuations, unlike hydrophobic solutes which display essentially white noise spectra. While the power spectra associated with tagged H2O molecules are not very sensitive to concentration in the intermediate frequency 1/falpha regime, the crossover to white noise is shifted to lower frequencies on going from pure solvent to aqueous alkali halide solutions. This suggests that new and relatively slow time scales enter the picture, possibly associated with processes such as migration of water molecules from the hydration shell to the bulk or conversion of contact ion pairs into solvent-separated ion pairs which translate into variations in equilibrium transport properties of salt solutions with concentration. For anions, cations, and solvent molecules, the trends in the alpha exponents of the multiple time scale region and the self-diffusivities are found to be strongly correlated.  相似文献   

4.
The excess entropy, defined as the difference between the entropies of the liquid and the ideal gas under identical density and temperature conditions, is studied as a function of density and temperature for liquid silica and a two-scale ramp potential, both of which are known to possess waterlike liquid state anomalies. The excess entropy for both systems is evaluated using a fairly accurate pair correlation approximation. The connection between the excess entropy and the density and diffusional anomalies is demonstrated. Using the pair correlation approximation to the excess entropy, it can be shown that if the energetically favorable local geometries in the low and high density limits have different symmetries, then a structurally anomalous regime can be defined in terms of orientational and translational order parameters, as in the case of silica and the two-scale ramp system but not for the one-scale ramp liquid. Within the category of liquids with waterlike anomalies, we show that the relationship between the macroscopic entropy and internal energy is sufficient to distinguish between those with local anisotropy and consequent open packings at low densities and those with isotropic interactions but multiple length scales. Since it is straightforward to evaluate the pair correlation entropy and internal energy from simulations or experimental data, such plots should provide a convenient means to diagnose the existence as well as type of anomalous behavior in a range of liquids, including ionic and intermetallic melts and complex fluids with ultrasoft repulsions.  相似文献   

5.
Development of multi-purpose probes for mass transport measurements is of importance to gain knowledge in diffusional behaviour in heterogeneous structures such as food, hygiene or pharamceuticals. By combining different techniques, such as Fluorescence Recovery After Photobleaching (FRAP) and Nuclear Magnetic Resonance Diffusometry (NMR-d), information of both local and global diffusion can be collected and used to gain insights on for example material heterogeneities and probe-material interactions. To obtain a FRAP-responsive probe, fluorescent silica particles were produced using fluorescent preconjugates added in a modified Stöber process. A NMR-d responsive moiety was introduced by derivatizing the fluorescent silica particles with polyethylene glycol. The particle size distributions were determined by dynamic light scattering and transmission electron microscopy and these measurements were compared to value extrapolated from diffusion measurements using FRAP and NMR-d. The good agreement between the FRAP and NMR-d measurements demonstrates the potential of multi-purpose probes for future applications concerning mass transport at local and global scale simultaneously.  相似文献   

6.
The relationship between structural order metrics and the excess entropy is studied using the transferable rigid ion model (TRIM) of beryllium fluoride melt, which is known to display waterlike thermodynamic anomalies. The order map for liquid BeF2, plotted between translational and tetrahedral order metrics, shows a structurally anomalous regime, similar to that seen in water and silica melt, corresponding to a band of state points for which average tetrahedral (q(tet)) and translational (tau) order are strongly correlated. The tetrahedral order parameter distributions further substantiate the analogous structural properties of BeF2, SiO2, and H2O. A region of excess entropy anomaly can be defined within which the pair correlation contribution to the excess entropy (S2) shows an anomalous rise with isothermal compression. Within this region of anomalous entropy behavior, q(tet) and S2 display a strong negative correlation, indicating the connection between the thermodynamic and the structural anomalies. The existence of this region of excess entropy anomaly must play an important role in determining the existence of diffusional and mobility anomalies, given the excess entropy scaling of transport properties observed in many liquids.  相似文献   

7.
8.
At present, there is no direct experimental evidence that primary silica particles, which exist only transiently for a few seconds during the St?ber silica synthesis, can be stable in aqueous solutions. In the present work, we show that primary silica particles are formed spontaneously after the dissolution of diglycerylsilane (DGS) in aqueous solutions and remain stable for prolonged periods of time. By using time-resolved fluorescence anisotropy (TRFA), we demonstrate that this unique property of DGS is ascribed to the slow kinetics of silica particle growth in diluted sols at pH approximately 9.0. The anisotropy decay of the cationic dye rhodamine 6G (R6G), which strongly adsorbs to silica oligomers and nanoparticles in DGS sols, could be fit to three components: a fast (picosecond) scale component associated with free R6G, a slower (nanosecond) rotational component associated with R6G bound to primary silica particles, and a residual (nondecaying) anisotropy component associated with R6G that was bound to secondary or larger particles that were unable to rotate on the time scale of the R6G emission lifetime (4 ns). The data show that, under conditions where fast hydrolysis is obtained, the initial size of the nuclei depends on the silica concentration, with larger nuclei being present in more concentrated sols, while the rate of growth of primary particles depends on both silica concentration and solution pH. At low silica concentrations and high pHs, it was possible to observe the growth of stable, nonaggregating primary silica particles by a mechanism involving rapid nucleation followed by monomer addition. The presence of stable primary particles was confirmed by atomic force microscopy (AFM) imaging. At higher silica concentrations and lower pHs, there was an increase in the initial size of the nuclei formed, which subsequently grew to a larger radius (> 4.5 nm) or aggregated with time, and in such cases, nucleation and aggregation occurred simultaneously in the early stage of silica formation. The data clearly show the power of time-resolved fluorescence anisotropy decay measurements for probing the growth of silica colloids and show that this method is useful for elucidating the mechanism of particle formation and growth in situ.  相似文献   

9.
Particle motion of a Lennard-Jones supercooled liquid near the glass transition is studied by molecular dynamics simulations. We analyze the wave vector dependence of relaxation times in the incoherent self-scattering function and show that at least three different regimes can be identified and its scaling properties determined. The transition from one regime to another happens at characteristic length scales. The length scale associated with the onset of Fickian diffusion corresponds to the maximum size of heterogeneities in the system, and the characteristic time scale is several times larger than the alpha relaxation time. A second crossover length scale is observed, which corresponds to the typical time and length of heterogeneities, in agreement with results from four point functions. The different regimes can be traced back to the behavior of the van Hove distribution of displacements, which shows a characteristic exponential regime in the heterogeneous region before the crossover to Gaussian diffusion and should be observable in experiments. Our results show that it is possible to obtain characteristic length scales of heterogeneities through the computation of two point functions at different times.  相似文献   

10.
Single particle Brownian dynamics simulation methods are employed to establish the full trajectory level predictions of our nonlinear stochastic Langevin equation theory of activated hopping dynamics in glassy hard sphere suspensions and fluids. The consequences of thermal noise driven mobility fluctuations associated with the barrier hopping process are determined for various ensemble-averaged properties and their distributions. The predicted mean square displacements show classic signatures of transient trapping and anomalous diffusion on intermediate time and length scales. A crossover to a stronger volume fraction dependence of the apparent nondiffusive exponent occurs when the entropic barrier is of order the thermal energy. The volume fraction dependences of various mean relaxation times and rates can be fitted by empirical critical power laws with parameters consistent with ideal mode-coupling theory. However, the results of our divergence-free theory are largely a consequence of activated dynamics. The experimentally measurable alpha relaxation time is found to be very similar to the theoretically defined mean reaction time for escape from the barrier-dominated regime. Various measures of decoupling have been studied. For fluid states with small or nonexistent barriers, relaxation times obey a simple log-normal distribution, while for high volume fractions the relaxation time distributions become Poissonian. The product of the self-diffusion constant and mean alpha relaxation time increases roughly as a logarithmic function of the alpha relaxation time. The cage scale incoherent dynamic structure factor exhibits nonexponential decay with a modest degree of stretching. A nearly universal collapse of the different volume fraction results occurs if time is scaled by the mean alpha relaxation time. Hence, time-volume fraction superposition holds quite well, despite the presence of stretching and volume fraction dependent decoupling associated with the stochastic barrier hopping process. The relevance of other origins of dynamic heterogeneity (e.g., mesoscopic domains), and comparison of our results with experiments, simulations, and alternative theories, is discussed.  相似文献   

11.
With their low thermal conductivity (λ ), silica aerogels can reduce carbon emissions from heating and cooling demands, but their widespread adoption is limited by the high production cost. A one‐pot synthesis for silica aerogel granulate is presented that drastically reduces solvent use, production time, and global warming potential. The inclusion of the hydrophobization agent prior to gelation with a post‐gelation activation step, enables a complete production cycle of less than four hours at the lab scale for a solvent use close to the theoretical minimum, and limits the global warming potential. Importantly, the one‐pot aerogel granulate retains the exceptional properties associated with silica aerogel, mostly λ =14.4±1.0 mW m−1⋅K−1 for the pilot scale materials, about half that of standing air (26 mW m−1⋅K−1). The resource‐, time‐, and cost‐effective production will allow silica aerogels to break out of its niche into the mainstream building and industrial insulation markets.  相似文献   

12.
Nanoscale sliding friction involving a polystyrene melt near its glass transition temperature Tg (373 K) exhibited dissipation phenomena that provide insight into the underlying molecular relaxation processes. A dissipative length scale that shows significant parallelism with the size of cooperatively rearranging regions (CRRs) could be experimentally deduced from friction-velocity isotherms, combined with dielectric loss analysis. Upon cooling to approximately 10 K above Tg, the dissipation length Xd grew from a segmental scale of approximately 3 A to 2.1 nm, following a power-law relationship with the reduced temperature Xd approximately TR-phi. The resulting phi=1.89+/-0.08 is consistent with growth predictions for the length scale of CRRs in the heterogeneous regime of fragile glass formers. Deviations from the power-law behavior closer to Tg suggest that long-range processes, e.g., the normal mode or ultraslow Fischer modes, may couple with the alpha relaxation, leading to energy dissipation in domains of tens of nanometers.  相似文献   

13.
The growth of spherulites of poly(ethylene oxide) in blends with poly(hydroxyether of bisphenol A) was investigated. In a very narrow range of crystallization temperatures, the spherulite growth deviates from the usual constant growth rate regime in a systematic manner in which the growth rate decreases with time. This is explained by local and overall changes in the composition with the proceeding crystallization that are due to the competition between the crystallization and diffusional chain displacement rates, respectively. These kinetic phenomena and processes can quantitatively be described by a suitable analysis of the experimental findings. Deceleration is predominantly caused by a slowing of the chain motion by the glass‐transition temperature being approached (i.e., vitrification) and, to a lesser extent, by dilution. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1250–1257, 2000  相似文献   

14.
Our theory of dynamic barriers, slow relaxation, and the glass transition of polymers melts is numerically applied using parameters relevant to real materials. The numerical results are found to be in qualitative agreement with all the approximate analytic expressions previously derived with quantitative differences on the order of approximately 20-30% or much less. The analytic prediction of a universal temperature dependence of the alpha relaxation time, and its intimate connection with the idea of a nearly universal crossover time, is established. Inter-relations between the breadth of the deeply supercooled regime, two definitions of the dynamic fragility, and the magnitude of the fast local Arrhenius process at the glass transition temperature are demonstrated and system-specific limitations identified. A quantitative application to segmental relaxation over 16 orders of magnitude in a polyvinylacetate melt yields encouraging results regarding the accuracy of the theory. The theoretical relaxation time results are well fit by multiple empirical forms (generally containing an assumed singular aspect) using parameters consistent with experimental studies. No physical significance is ascribed to this finding, but it does provide additional support for the temperature dependence of the alpha relaxation process predicted by the theory.  相似文献   

15.
For the first time, the dispersion stability of silica nanoparticles has been investigated in high-temperature and high-pressure ethanol by measuring the hydrodynamic diffusion coefficient of the particles by means of dynamic light scattering. The silica nanoparticles remain stable in ethanol within a wide temperature range of 24-304 degrees C at 12.3 MPa, and they start to aggregate at T >or= 305 degrees C. Numerical analysis reveals that the net interparticle repulsive potential barrier decreases dramatically with increasing temperature due to the changes in the properties of the medium. We observed that particles remain highly stable in the nonpolar supercritical ethanol in the temperature regime 241-304 degrees C, where the DLVO potential barrier is only 5-2 k(B)T. The dispersion stability of silica nanoparticles at this low potential barrier in high-temperature and high-pressure ethanol, especially in the supercritical ethanol, is fascinating. The silica-ethanol system might be a unique and special example in the colloidal dispersions. Results suggest that silica nanoparticles may be used as a model colloid to investigate the colloidal transport phenomena in the supercritical ethanol.  相似文献   

16.
The regime of validity of Rosenfeld excess entropy scaling of diffusivity and viscosity is examined for two tetrahedral, network-forming ionic melts (BeF(2) and SiO(2)) using molecular dynamics simulations. With decrease in temperature, onset of local caging behavior in the diffusional dynamics is shown to be accompanied by a significant increase in the effect of three-body and higher-order particle correlations on the excess entropy, diffusivity, ionic conductivity, and entropy-transport relationships. The signature of caging effects on the Rosenfeld entropy scaling of transport properties is a distinctly steeper dependence of the logarithm of the diffusivity on the excess entropy in ionic melts. This is shown to be true also for a binary Lennard-Jones glassformer, based on available results in the literature. Our results suggest that the onset of a landscape-influenced regime in the dynamics is correlated with this characteristic departure from Rosenfeld scaling. The breakdown of the Nernst-Einstein relation in the ionic melts can also be correlated with the emerging cooperative dynamics.  相似文献   

17.
Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water-like anomalies and the liquid-liquid phase transition.  相似文献   

18.
Field asymmetric waveform ion mobility spectrometry (FAIMS) is rapidly gaining acceptance as a robust, versatile tool for post-ionization separations prior to mass-spectrometric analyses. The separation is based on differences between ion mobilities at high and low electric fields, and proceeds at atmospheric pressure. Two major advantages of FAIMS over condensed-phase separations are its high speed and an ion focusing effect that often improves sensitivity. While selected aspects of FAIMS performance are understood empirically, no physical model rationalizing the resolving power and sensitivity of the method and revealing their dependence on instrumental variables has existed. Here we present a first-principles computational treatment capable of simulating the FAIMS analyzer for virtually any geometry (including the known cylindrical and planar designs) and arbitrary operational parameters. The approach involves propagating an ensemble of ion trajectories through the device in real time under the influence of applied asymmetric potential, diffusional motion incorporating the high-field and anisotropic phenomena, and mutual Coulomb repulsion of ionic charges. Calculations for both resolution and sensitivity are validated by excellent agreement with measurements in different FAIMS modes for ions representing diverse types and analyte classes.  相似文献   

19.
Styrene phenylation by non-activated bromobenzene (Heck reaction) in the presence of ligand-free catalytic systems based on PdCl2 proceeds under diffusional controlled regime. It was experimentally found that an increase in the agitation speed leads to an increase in the reaction rate, a substantial decrease of the time for attaining a product complete yield and gives rise to the extra high TOF (150,000 h−1 in 50 min at 780 rpm).  相似文献   

20.
We have studied clustering of colloidal particles under the influence of an ac electric field as a function of frequency. The field was applied in a direction perpendicular to the confining walls. Two regimes are observed, a low frequency regime where the clusters are isotropic with a local triangular order, as reported earlier in the literature, and a new high-frequency regime where the clusters are highly elongated (anisotropic) with no local order. The crossover from one regime to the other occurs at a critical frequency, f(c). The threshold field for the cluster formation, E(th), increases with frequency in both the regimes. An increase in the particle size leads to a reduction in both E(th) and f(c). We present evidence to show that the elongated structures seen at high frequency are related to the field inhomogeneities at imperfections on the conducting surface. We also propose a possible mechanism based on hydrodynamic flow considerations to explain the formation of these clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号