首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A process was developed to fractionate and isolate the hemicellulose B component of corn fiber generated by corn wet milling. The process consisted of pretreatment by soaking in aqueous ammonia followed by enzymatic cellulose hydrolysis, during which the hemicellulose B was solubilized by cleavage into xylo-oligosaccharides and subsequently recovered by precipitation with ethanol. The pretreatment step resulted in high retention of major sugars and improvement of subsequent enzymatic hydrolysis. The recovered hemicellulose B was hydrolyzed by a cocktail of enzymes that consisted of β-glucosidase, pectinase, xylanase, and ferulic acid esterase (FAE). Xylanase alone was ineffective, demonstrating yields of less than 2% of xylose and arabinose. The greatest xylose and arabinose yields, 44% and 53%, respectively, were obtained by the combination of pectinase and FAE. A mass balance accounted for 87% of the initially present glucan, 91% of the xylan, and 90% of the arabinan. The developed process offered a means for production of corn fiber gum as a value-added co-product and C5 sugars, which could be converted to other valuable co-products through fermentation in a corn wet-milling biorefinery.  相似文献   

2.
Xylan is the major component of hemicellulose, which consists of up to one-third of the lignocellulosic biomass. When the zinc chloride solution was used as a pretreatment agent to facilitate cellulose hydrolysis, hemicellulose was hydrolyzed during the pretreatment stage. In this study, xylan was used as a model to study the hydrolysis of hemicellulose in zinc chloride solution. The degradation of xylose that is released from xylan was reduced by the formation of zinc-xylose complex. The xylose yield was >90% (w/w) at 70°C. The yield and rate of hydrolysis were a function of temperature and the concentration of zinc chloride. The ratio of zinc chloride can be decreased from 9 to 1.3 (w/w). At this ratio, 76% of xylose yield was obtained. When wheat straw was pretreated with a concentrated zinc chloride solution, the hemicellulose hydrolysate contained only xylose and trace amounts of arabinose and oligosaccharides. With this approach, the hemicellulose hydrolysate can be separated from cellulose residue, which would be hydrolyzed subsequently to glucose by acid or enzymes to produce glucose. This production scheme provided a method to produce glucose and xylose in different streams, which can be fermented in separated fermenters.  相似文献   

3.
秸秆稀酸水解液的气相色谱/质谱法研究   总被引:1,自引:0,他引:1  
在秸秆两步稀酸水解工艺中,用气相色谱/质谱(GC/MS)法对其水解液中的单糖成分进行测定,采用2%硼氢化钠的氨溶液将稀酸水解液中的单糖还原成糖醇,然后在甲基咪唑催化剂的作用下和乙酸酐在水相中直接反应生成乙酰化的糖醇,用二氯甲烷萃取后进行GC/MS测定.研究结果表明:秸秆稀酸水解液中有五种单糖,主要是木糖和葡萄糖,其次是阿拉伯糖、半乳糖和少量的甘露糖;利用此方法测定了一批秸秆稀酸水解液,得到了该秸秆稀酸水解过程的最佳的反应时间.该方法可快速、准确测定秸秆稀酸水解液中单糖的浓度,为水解工艺的研究提供一种有效的分析方法.  相似文献   

4.
Bagasse, corn husk, and switchgrass were pretreated with ammonia water to enhance enzymatic hydrolysis. The sample (2 g) was mixed with 1–6 mL ammonia water (25–28% ammonia) and autoclaved at 120°C for 20 min. After treatment, the product was vacuum-dried to remove ammonia gas. The dried solid could be used immediately in the enzymatic hydrolysis without washing. The enzymatic hydrolysis was effectively improved with more than 0.5 and 1 mL ammonia water/g for corn husk and bagasse, respectively. In bagasse, glucose, xylose, and xylobiose were the main products. The adsorption of CMCase and xylanase was related to the initial rate of enzymatic hydrolysis. In corn husks, arabinoxylan extracted by pretreatment was substantially unhydrolyzed because of the high ratio of arabinose to xylose (0.6). The carbohydrate yields from cellulose and hemicellulose were 72.9% and 82.4% in bagasse, and 86.2% and 91.9% in corn husk, respectively. The ammonia/water pretreatment also benefited from switchgrass (Miscanthus sinensis and Solidago altissima L.) hydrolysis.  相似文献   

5.
Corn fiber is a coproduct produced during the corn wet-milling process and is similar to other high hemicellulose/cellulose-containing biomass such as grasses, straws, or bagasse, all of which represent potential fermentation feedstock for conversion into biofuels or other products. Corn fiber was subjected to ammonia-explosion (AFEX) treatment to increase degradability and then enzymatically digested with a combined mixture of commercial amylase, xylanase, and cellulase enzyme preparations. Whereas the starch and cellulose components were converted solely to glucose, oligosaccharides represented 30–40% of the xylan degradation products. This enzyme mixture also produced substantial oligosaccharides with xylans purified from corn fiber, corn germ, beechwood, oatspelt, or wheat germ. Commercial xylan-degrading enzyme preparations containing xylanase, xylosidase, and arabinosidase activities were then used alone or in varying combinations to attempt to maximize degradation of these isolated xylans of differing chemical compositions. The results showed that oatspelt and beechwood xylans were degraded most extensively (40–60%) with substantial amounts of xylose, xylobiose, and xylotriose as products depending on the enzyme combination used. Corn fiber and wheat germ xylans, which contain large amounts of arabinose and uronic acid sidechains, were poorly degraded and only small amounts of arabinose and xylose and large amounts of pentamer or longer oligosaccharides were produced by enzymatic degradation. The data suggest that whereas enzymatic digestion of biomass hemicellulose does not produce toxic products, the process is not effective in producing a suitable fermentable substrate stream because of the low levels of monosaccharides and high levels of oligosaccharides produced. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

6.
Crude enzyme preparations fromAureobasidium sp. strain NRRL Y-2311-1 were characterized and tested for the capacity to saccharify corn fiber. Cultures grown on xylan, corn fiber, and alkaline hydrogen peroxide (AHP)-pretreated corn fiber produced specific levels of endoxylanase, amylase, protease, cellulase, and other activities. Using equal units of endoxylanase activity, crude enzymes from AHP-pretreated corn fiber cultures were most effective in saccharification. Multiple enzyme activities were implicated in this process. Pretreatment of corn fiber with AHP nearly doubled the susceptibility of hemicellulose to enzymatic digestion. Up to 138 mg xylose, 125 mg arabinose, and 490 mg glucose were obtained per g pretreated corn fiber under conditions tested. The use of brand or trade names may be necessary to report factually on available data. The USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable. All programs and services of the USDA are offered on a non-discriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

7.
Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars prior to fermentation. Hydrolysis can be performed enzymatically or with mineral acids. In this study, dilute sulfuric acid was used as a catalyst for the pretreatment of rapeseed straw. The purpose of this study is to optimize the pretreatment process in a 15-mL bomb tube reactor and investigate the effects of the acid concentration, temperature, and reaction time. These parameters influence hemicellulose removal and production of sugars (xylose, glucose, and arabinose) in the hydrolyzate as well as the formation of by-products (furfural, 5-hydroxymethylfurfural, and acetic acid). Statistical analysis was based on a model composition corresponding to a 33 orthogonal factorial design and employed the response surface methodology to optimize the pretreatment conditions, aiming to attain maximum xylan, mannan, and galactan (XMG) extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: H2SO4 concentration of 1.76% and temperature of 152.6 °C with a reaction time of 21 min. Under these optimal conditions, 85.5% of the total sugar was recovered after acid hydrolysis (78.9% XMG and 6.6% glucan). The hydrolyzate contained 1.60 g/L glucose, 0.61 g/L arabinose, 10.49 g/L xylose, mannose, and galactose, 0.39 g/L cellobiose, 0.94 g/L fructose, 0.02 g/L 1,6-anhydro-glucose, 1.17 g/L formic acid, 2.94 g/L acetic acid, 0.04 g/L levulinic acid, 0.04 g/L 5-hydroxymethylfurfural, and 0.98 g/L furfural.  相似文献   

8.
In order to understand the product inhibition of enzymatic lignocellulose hydrolysis, the enzymatic hydrolysis of pretreated rice straw was carried out over an enzyme loading range of 2 to 30 FPU/g substrate, and the inhibition of enzymatic hydrolysis was analyzed kinetically based on the reducing sugars produced. It was shown that glucose, xylose, and arabinose were the main reducing sugar components contained in the hydrolysate. The mass ratio of glucose, xylose, and arabinose to the total reducing sugars was almost constant at 52.0?%, 29.7?% and 18.8?%, respectively, in the enzyme loading range. The reducing sugars exerted competitive inhibitory interferences to the enzymatic hydrolysis. Glucose, xylose, and arabinose had a dissociation constant of 1.24, 0.54 and 0.33?g/l, respectively. The inhibitory interferences by reducing sugars were superimposed on the enzymatic hydrolysis. The enzymatic hydrolysis could be improved by the removal of the produced reducing sugars from hydrolysate.  相似文献   

9.
An innovative green column-switching high-performance liquid chromatographic (HPLC) technique was developed by coupling traditional and Pb2+ ion-exclusion columns to study enzyme hydrolysis components of waste cellulosic biomass. Pure water was used as the mobile phase to separate neutral polar analytes in high salt content solution. The column-switching HPLC-RI was connected on-line to the immobilized enzyme reactor for successive on-line desalting and simultaneous analysis of six carbohydrates (cellobiose, glucose, xylose, galactose, mannose, and arabinose) in the hydrolysate of waste paper and waste tree branch by incorporating the heart-cut and the elution-time-difference techniques. Six internal standard calibration curves in the linear concentration range of 0–2000 μg mL−1 were prepared. Xylitol was used as the internal standard to give excellent linear correlation coefficients (0.9984–0.9999). The limits of detection and quantification for cellobiose, glucose, xylose, galactose, mannose, and arabinose varied between 0.12–4.88 and 0.40–16.3 μg mL−1, respectively, with an accuracy of 90–102% and a precision of 0.1–7.8%. Cellulose and hemicellulose contents were higher in waste paper than in waste tree branch.  相似文献   

10.
A quantitative approach was taken to determine the inhibition effects of glucose and other sugar monomers during cellulase and β-Glucosidase hydrolysis of two types of cellulosic material: Avicel and acetic acid-pretreated softwood. The increased glucose content in the hydrolysate resulted in a dramatic increase in the degrees of inhibition on both β-Glucosidase and cellulase activities. Supplementation of mannose, xylose, and galactose during cellobiose hydrolysis did not show any inhibitory effects on β-Glucosidase activity. However, these sugars were shown to have significant inhibitory effects on cellulase activity during cellulose hydrolysis. Our study suggests that high-substrate consistency hydrolysis with supplementation of hemicellulose is likely to be a practical solution to minimizing end-product inhibition effects while producing hydrolysate with high glucose concentration.  相似文献   

11.
赵丹  冯峰  粟有志  张菁楠  于莲  苏瑾  张峰 《色谱》2017,35(4):413-420
建立了同时测定螺旋藻多糖水解产物中鼠李糖、木糖、阿拉伯糖、果糖、甘露糖、葡萄糖、半乳糖、甘露醇、核糖、岩藻糖、葡萄糖醛酸、半乳糖醛酸12种糖类化合物的超高效液相色谱-串联质谱分析方法。螺旋藻样品经超声波辅助提取,用三氟乙酸水解,经Waters Acquity BEH Amide色谱柱(100 mm×2.1 mm,1.7μm)分离,以10mmol/L甲酸铵和10 mmol/L甲酸铵-乙腈为流动相,在电喷雾电离源负离子(ESI-)模式下,用多反应监测(MRM)模式检测。结果表明,12种糖类化合物的定量限为0.005~0.15 mg/kg,线性范围为0.05~5 mg/L。按照样品中每种糖本底含量的50%、100%、150%进行添加,回收率为80.21%~121.6%。应用该方法对螺旋藻样品进行分析,结果发现:大部分样品都能检测到岩藻糖、半乳糖、阿拉伯糖、鼠李糖、葡萄糖、果糖、木糖、核糖,含量在0.3~889.4 mg/g之间。此外,测定的15个样品中岩藻糖、半乳糖、阿拉伯糖、鼠李糖、葡萄糖、果糖、木糖、核糖是共有组分,含量差异较大,但在所有样品中均未检测到甘露醇和甘露糖。该方法的建立可为阐明螺旋藻多糖的结构组成及其活性提供技术支撑及基础数据。  相似文献   

12.
Dilute-acid hydrolysis of brewery's spent grain to obtain a pentose-rich fermentable hydrolysate was investigated. The influence of operational conditions on polysaccharide hydrolysis was assessed by the combined severity parameter (CS) in the range of 1.39–3.06. When the CS increased, the pentose sugars concentration increased to a maximum at a CS of 1.94, whereas the maximum glucose concentration was obtained for a CS of 2.65. The concentrations of furfural, hydroxymethylfurfural (HMF), as well as formic and levulinic acids and total phenolic compounds increased with severity. Optimum hydrolysis conditions were found at a CS of 1.94 with >95% of feedstock pentose sugars recovered in the monomeric form, together with a low content of furfural, HMF, acetic and formic acids, and total phenolic compounds. This hydrolysate containing glucose, xylose, and arabinose (ratio 10∶67∶32) was further supplemented with inorganic salts and vitamins and readily fermented by the yeast Debaryomyces hansenii CCMI 941 without any previous detoxification stage. The yeast was able to consume all sugars furfural, HMF, and acetic acid with high biomass yield, 0.68C-mol/C-mol, and productivity, 0.92 g/(L·h). Detoxification with activated charcoal resulted in a similar biomass yield and a slight increase in the volumetric productivity (11%).  相似文献   

13.
Corn stover silage is an attractive raw material for the production of biofuels and chemicals due to its high content of carbohydrates and easy degradability. The effects of Fe(NO3)3 pretreatment conditions on sugar yields were investigated for corn stover silage. In addition, a combined severity factor was used to evaluate the effect of pretreatment conditions on the concentration of total sugars and inhibitors. Optimum pretreatment condition was obtained at 150 °C for 10 min with 0.05 M Fe(NO3)3, at which the yields of soluble xylose and glucose in liquid achieved 91.80% of initial xylose, 96.74% of initial arabinose and 19.09% of initial glucose, respectively, meanwhile, 91.84% of initial xylose, 98.24% of initial arabinose, and 19.91% of initial glucose were removed. In addition, a severity analysis showed that the maximum sugar concentration of 33.48 g/l was achieved at combined severity parameter value of 0.62, while the inhibitor concentration was only 0.03 g/l. Fe(NO3)3 is an effective catalyst to enhance hemicellulose hydrolysis in corn stover silage, the yields of monomeric xylose in the liquid fraction reached as high as 91.06% of initial xylose and 96.22% of initial arabinose, respectively.  相似文献   

14.
Dilute-acid hydrolysis pretreatment of sugarcane bagasse resulted in release of 48% (18.4 g/L) of the xylan in the hemicellulose fraction into the hydrolysate as monomeric xylose. In order to enhance the recuperation of this monomer, a post-hydrolysis stage consisted of thermal treatment was carried out. This treatment resulted in an increase in xylose release of 62% (23.5 g/L) of the hemicellulose fraction. Original and post-hydrolysates were concentrated to the same levels of monomeric xylose in the fermentor feed. During the fermentation process, cellular growth was observed to be higher in the post-hydrolysate (3.5 g/L, Y x/s?=?0.075 g cells/g xylose) than in the original hydrolysate (2.9 g/L, Y x/s?=?0.068 g cells/g xylose). The post-treated hydrolysate required less concentration of sugars resulting in a lower concentration of fermentation inhibitors, which were formed primarily in the dilute acid hydrolysis step. Post-hydrolysis step led to a high xylose–xylitol conversion efficiency of 76% (0.7 g xylitol/g xylose) and volumetric productivity of 0.68 g xylitol/L h when compared to 71% (0.65 g xylitol/g xylose and productivity of 0.61 g xylitol/L h) for the original hemicellulosic hydrolysate.  相似文献   

15.
Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67-210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber. The sugars tested included glucose, xylose, and arabinose. All five strains were able to utilize the three sugars for astaxanthin production. Among them, ATCC 74219 was the best astaxanthin producer. Kinetics of sugar utilization of this strain was studied, both with the individual sugars and with their mixtures. Arabinose was found to give the highest astaxanthin yield. It also was observed that glucose at high concentrations suppressed utilization of the other two sugars. Corn fiber hydrolysate obtained by dilute sulfuric acid pretreatment and subsequent enzyme hydrolysis was tested for astaxanthin production by strain ATCC 74219. Dilution of the hydrolysate was necessary to allow growth and astaxanthin production. All the sugars in the hydrolysate diluted with two volumes of water were completely consumed. Astaxanthin yield of 0.82 mg/g total sugars consumed was observed.  相似文献   

16.
Pretreatment based on aqueous ammonia was investigated under two different modes of operation: soaking in aqueous ammonia and ammonia recycle percolation. These processes were applied to three different feedstocks with varied composition: corn stover, high lignin (HL), and low lignin (LL) hybrid poplars. One of the important features of ammonia-based pretreatment is that most of the hemicellulose is retained after treatment, which simplifies the overall bioconversion process and enhances the conversion efficiency. The pretreatment processes were optimized for these feedstocks, taking carbohydrate retention as well as sugar yield in consideration. The data indicate that hybrid poplar is more difficult to treat than corn stover, thus, requires more severe conditions. On the other hand, hybrid poplar has a beneficial property that it retains most of the hemicellulose after pretreatment. To enhance the digestibility of ammonia-treated poplars, xylanase was supplemented during enzymatic hydrolysis. Because of high retention of hemicellulose in treated hybrid poplar, xylanase supplementation significantly improved xylan as well as glucan digestibility. Of the three feedstocks, best results and highest improvement by xylanase addition was observed with LL hybrid poplar, showing 90% of overall sugar yield.  相似文献   

17.
Two new ethanologenic strains (FBR4 and FBR5) of Escherichia coli were constructed and used to ferment corn fiber hydrolysate. The strains carry the plasmid pLO1297, which contains the genes from Zymomonas mobilis necessary for efficiently converting pyruvate into ethanol. Both strains selectively maintained the plasmid when grown anaerobically. Each culture was serially transferred 10 times in anaerobic culture with sugar-limited medium containing xylose, but noselective antibiotic. An average of 93 and 95% of the FBR4 and FBR5 cells, respectively, maintained pLO1297 in anaerobic culture. The fermentation performances of the repeatedly transferred cultures were compared with those of cultures freshly revived from stock in pH-controlled batch fermentations with 10% (w/v) xylose. Fermentation results were similar for all the cultures. Fermentations were completed within 60 h and ethanol yields were 86–92% of theoretical. Maximal ethanol concentrations were 3.9–4.2% (w/v). The strains were also tested for their ability to ferment corn fiber hydrolysate, which contained 8.5% (w/v) total sugars (2.0% arabinose, 2.8% glucose, and 3.7% xylose). E. coli FBR5 produced more ethanol than FBR4 from the corn fiber hydrolysate. E. coli FBR5 fermented all but 0.4% (w/v) of the available sugar, whereas strain FBR4 left 1.6% unconsumed. The fermentation with FBR5 was completed within 55 h and yielded 0.46 g of ethanol/g of available sugar, 90% of the maximum obtainable. Author to whom all correspondence and reprint requests should be addressed. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA im plies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

18.
Godin B  Agneessens R  Gerin PA  Delcarte J 《Talanta》2011,85(4):2014-2026
We adapted and optimized a method to quantify the cellulose, hemicellulose, xylan, arabinan, mannan, galactan contents in lignocellulosic biomass. This method is based on a neutral detergent extraction (NDE) of the interfering biomass components, followed by a sulfuric acid hydrolysis (SAH) of the structural polysaccharides, and a liquid chromatography with charged aerosol detection (LC-CAD) to analyze the released monosaccharides. The first step of this NDE-SAH-LC-CAD method aims at removing all compounds that interfere with the subsequent sulphuric acid hydrolysis or with the subsequent chromatographic quantification of the cellulosic and hemicellulosic monosaccharides. This step includes starch hydrolysis with an analytical thermostable α-amylase followed by an extraction of soluble compounds by a Van Soest neutral detergent solution (NDE). The aim of this paper was to assess the precision of this method when choosing fiber sorghum (Sorghum bicolor (L.) Moench), tall fescue (Festuca arundinacea Schreb.) and fiber hemp (Cannabis sativa L.) as representative lignocellulosic biomass. The cellulose content of fiber sorghum, tall fescue and fiber hemp determined by the NDE-SAH-LC-CAD method were 28.7 ± 1.0, 29.7 ± 1.0 and 43.6 ± 1.2 g/100 g dry matter, respectively, and their hemicellulose content were 18.6 ± 0.5, 16.5 ± 0.5 and 14.5 ± 0.2 g/100 g dry matter, respectively. Cellulose, mannan and galactan contents were higher in fiber hemp (dicotyledon) as compared to tall fescue and fiber sorghum (monocotyledons). The xylan, arabinan and total hemicellulose contents were higher in tall fescue and fiber sorghum as compared to fiber hemp. The precision of the NDE-SAH-LC-CAD method was better for polysaccharide concentration levels above 1 g/100 g dry matter. Galactan analysis offered a lower precision, due to a lower CAD response intensity to galactose as compared to the other monosaccharides. The dispersions of the results (expanded uncertainty) of the NDE-SAH-LC-CAD method were smaller as compared to the Van Soest (VS) method. In addition, the NDE-SAH-LC-CAD method was able to provide additional information on the composition of the hemicellulose (xylan, arabinan, mannan and galactan content) that is not provided by the Van Soest method. The NDE-SAH-LC-CAD method offers also the advantage of a better specificity for hemicellulose and cellulose, as compared to the NREL and Uppsala methods.  相似文献   

19.
In this study, samples of moso bamboo were hydrolyzed for textile fiber with oxalic acid under various process conditions. Saeman hydrolysis models were applied to predict the percentage of xylan remained in the substrate after pretreatment and the net xylose yield in the liquid stream. Kinetic constants for Saeman hydrolysis models were analyzed by an Arrhenius-type expansion which include activation energy and catalyst concentration factors. The result showed that the degradation activation energies of xylan and xylose were 97.27 and 136.38 kJ/mol, respectively. Then the kinetic of mathematical models were obtained. Furthermore, the reaction parameters of oxalic acid concentration (1–4 % w/w), reaction temperature (150–180 °C), and reaction time (5–60 min) were handled as a single parameter, combined severity, which ranged in the present study from 0.86 to 1.62. Using combined severity parameters, an optimal condition was achieved which was as the followings: oxalic acid 2.0 % w/w, 170 °C, and 20 min. Under these conditions, 2.3 g glucose/L and 13.65 g xylose/L were produced in the hydrolysate fraction, 54.1 % glucan and 10.8 % xylan were produced in the residue fraction.  相似文献   

20.
High-yield fermentation of pentoses into lactic acid   总被引:3,自引:0,他引:3  
Lactobacillus species capable of fermenting glucose are generally incapable of utilizing xylose for growth or fermentation. In this study, a novel aspect of a well-known Lactobacillus strain, L. casei subsp. rhamnous (ATCC 10863), was uncovered: it can ferment xylose as efficiently as glucose. This strain is a registered organism, extremely stable on long-term operation. Fermentation by this strain is characterized by an initial lag phase lasting 24–72 h before xylose consumption takes place. The yield (grams/gram) of lactic acid from xylose is in excess of 80% with initial volumetric productivity of 0.38 g/(L-h). Acetic acid is the primary byproduct formed at the level of about 10% of the lactic acid. In addition to xylose, it can ferment all other minor sugars in hemicellulose except arabinose. Subjected to mixed sugar fermentation, this strain consumes glucose first, then mannose, followed by almost simultaneous utilization of xylose and galactose. It shows high tolerance for lactic acid as well as extraneous toxins. It can ferment the mixed sugars present in acid-treated hydrolysate of softwood, giving yields similar to that of pure sugar but at a slower rate. Author to whom all correspondence and reprint requests should be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号