首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A blend of a newly synthesized polyfluorene(PDHBF) and polyvinylcarbazole(PVK) exhibits a photoluminescence(PL) emission spectrum of PDHBF without an increase in the PL intensity on photoexcitation at 340 nm, the UV-visible absorption maximum of PVK, despite of a substantial spectrum overlap. However, the indirect photoexcitation of the blend suppresses the secondary emission of the PL with the maximum at 520 nm. The chromophores generating the secondary emission are formed when the chromophores are photoexcited above the critical energy level of an excited state. The chromophores formed by the energy transfer have energy lower than the critical energy and fail to form the excimers. A low temperature PL study of the blend in a cryogenic chamber proves that the energy transfer in the system takes place mainly between the excimers of PVK generated by the partially eclipsed dimeric states of two carbazole units and the fluorophores of PDHBF.  相似文献   

2.
《中国化学快报》2020,31(11):2965-2969
In the active layer of organic solar cells (OSCs), the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices. Herein, we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides (PDI) dyads (2PDI-Th and fused-2PDI-Th), in order to provide a unique explanation in depth on their different performances in OSC devices. From the transient absorption (TA) spectra, the singlet excitons of 2PDI-Th form excimers in the time scale of 1.5 ps. Then the excimers go into the triplet state via intersystem crossing (ISC). In fused-2PDI-Th, triplet excitons are generated directly from the singlet excited excitons via the efficient ISC. Density functional theory (DFT) calculations further support the formation of excimers. DFT results indicate that 2PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers, while fused-2PDI-Th gives a twisted X-shaped configuration in the optimized ground and excited state. In steady-state emission spectra, 2PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps, which is much shorter than those of PDI (5.5 ns) and fused-2PDI-Th (3.3 ns). The triplet lifetime (67 μs) of fused-2PDI-Th is factor of 3 longer than that of 2PDI-Th (22 μs). These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons, which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.  相似文献   

3.
In the active layer of organic solar cells (OSCs), the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices. Herein, we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides (PDI) dyads (2PDI-Th and fused-2PDI-Th), in order to provide a unique explanation in depth on their different performances in OSC devices. From the transient absorption (TA) spectra, the singlet excitons of 2PDI-Th form excimers in the time scale of 1.5 ps. Then the excimers go into the triplet state via intersystem crossing (ISC). In fused-2PDI-Th, triplet excitons are generated directly from the singlet excited excitons via the efficient ISC. Density functional theory (DFT) calculations further support the formation of excimers. DFT results indicate that 2PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers, while fused-2PDI-Th gives a twisted X-shaped configuration in the optimized ground and excited state. In steady-state emission spectra, 2PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps, which is much shorter than those of PDI (5.5 ns) and fused-2PDI-Th (3.3 ns). The triplet lifetime (67 μs) of fused-2PDI-Th is factor of 3 longer than that of 2PDI-Th (22 μs). These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons, which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.  相似文献   

4.
The PL and EL spectra of poly(N-vinylcarbazole) (PVK) : 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline (BCP) (1:1 w/w) film were found completely different. The PL spectrum is a single peak at 415 nm that originates from excitons emission from PVK, and the tail of the spectrum is suggested to be excimer emission from BCP molecules. However, a new emission at 595 nm was found in the EL spectra of devices ITO/PEDOT:PSS(50 nm)/PVK:BCP(1:1)(100 nm)/Al. After aggregate, exciplex and product of electrochemical reaction were ruled out, the new emission was proposed to be electroplex emission that occurred between PVK and BCP molecules. Under high voltage, only electroplex emission can be observed in the EL spectra.  相似文献   

5.
Results of ab initio molecular dynamics (AIMD), quantum mechanics/molecular mechanics (QM/MM), and classical molecular dynamics (CMD) simulations of Cm(3+) in liquid water at a temperature of 300 K are reported. The AIMD simulation was based on the Car-Parrinello MD scheme and GGA-PBE formulation of density functional theory. Two QM/MM simulations were performed by treating Cm(3+) and the water molecules in the first shell quantum mechanically using the PBE (QM/MM-PBE) and the hybrid PBE0 density functionals (QM/MM-PBE0). Two CMD simulations were carried out using ab initio derived pair plus three-body potentials (CMD-3B) and empirical Lennard-Jones pair potential (CMD-LJ). The AIMD and QM/MM-PBE simulations predict average first shell hydration numbers of 8, both of which disagree with recent experimental EXAFS and TRLFS value of 9. On the other hand, the average first shell hydration numbers obtained in the QM/MM-PBE0 and CMD simulations was 9, which agrees with experiment. All the simulations predicted an average first shell and second shell Cm-O bond distance of 2.49-2.53 ? and 4.67-4.75 ? respectively, both of which are in fair agreement with corresponding experimental values of 2.45-2.48 and 4.65 ?. The geometric arrangement of the 8-fold and 9-fold coordinated first shell structures corresponded to the square antiprism and tricapped trigonal prisms, respectively. The second shell hydration number for AIMD QM/MM-PBE, QM/MM-PBE0, CMD-3B, and CMD-LJ, were 15.8, 17.2, 17.7, 17.4, and 16.4 respectively, which indicates second hydration shell overcoordination compared to a recent EXAFS experimental value of 13. Save the EXAFS spectra CMD-LJ simulation, all the computed EXAFS spectra agree fairly well with experiment and a clear distinction could not be made between configurations with 8-fold and 9-fold coordinated first shells. The mechanisms responsible for the first shell associative and dissociative ligand exchange in the classical simulations have been analyzed. The first shell mean residence time was predicted to be on the nanosecond time scale. The computed diffusion constants of Cm(3+) and water are in good agreement with experimental data.  相似文献   

6.
An efficient approach for quantitative modeling of liquid phase photoelectron spectra, reorganization energies, and redox potentials with DFT‐based molecular dynamics simulations is presented. The method is based on a large scale cluster‐continuum approach combined with the so‐called reflection principle (RP). Finite size clusters of solute molecules with solvating water molecules are at first generated using either classical molecular dynamics or molecular dynamics with a quantum thermostat which accounts for nuclear quantum effects. In the next step, the electron binding energies are calculated. Finite‐size corrections for (i) positions of electron binding energies and (ii) width of the spectrum are evaluated via a dielectric continuum approach. The performance of such a reflection principle with additional broadening approach (RP‐AB) for oxidation of multiply charged iron anions, [Fe(CN)6]4− and [Fe(CN)6]3− is demonstrated. The role of nuclear quantum effects is discussed as well as the relation between spectroscopic data and electrochemical quantities. Results are compared with recent liquid photoemission experiments, explaining the obstacles for applying liquid phase photoemission spectroscopy as a direct method for obtaining absolute redox potentials and suggesting a way to overcome them. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Paper presents the quantum chemical modeling of the optical absorption spectra of 6-fluoro, 6-bromo, 7-trifluoromethyl, 6-cyano and 6-carboethoxy derivatives of 1,3-Dimethyl-1H-Pyrazolo[3,4-b]quinoline. The calculations are performed by means of the semiempirical quantum chemical methods (AM1 or PM3) in combination with molecular dynamics (MD) simulations at T=300 K. It is shown that a particular rotational dynamics of the methyl, trifluoromethyl or ethyl groups practically does not influence the optical absorption in the spectral range 200-500 nm whereas broadening of absorption bands may be well reproduced within MD simulations including all types of nuclei vibrations. The results of calculations are compared with the measured spectra of optical absorption. The quantum chemical method AM1 in combination with MD simulations gives for all dyes the best agreement between the calculated and measured spectral positions of the first absorption band (absorption threshold).  相似文献   

8.
Paper deals with experimental investigations and quantum chemical calculations of the optical absorption spectra of methoxy and carboethoxy 1,3-diphenyl derivatives of the pyrazoloquinoline ([PQ]): 6-methoxy-1,3-dyphenil-[PQ], 6-methoxy-1,3-(p-methoxyphenyl)-[PQ], 6-methoxy-1-(p-methoxyphenyl)-[PQ] and 6-carboethoxy-1,3-diphenyl-[PQ]. The quantum chemical calculations are performed by means of the semiempirical quantum chemical methods (AM1 or PM3) applied to: (a) the equilibrium molecular conformation in vacuo (T=0 K); (b) the molecular dynamic (MD) trajectory (T=300 K) which includes the dynamics of a certain molecular fragment (moiety) only (fragmental MD simulations); or (c) the MD trajectory obtained for most general case within the total MD simulations at T=300 K. The results of these calculations are compared with the measured spectra of the optical absorption. The quantum chemical simulations show that the dynamics of the methoxy or carboethoxy groups practically does not influence the absorption spectrum whereas the strongest its modification (300相似文献   

9.
Two conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Cationic states of g auche-conformer III and anti- conformers IV were selectively produced by two-color excitation via the respective S 1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70146 and 69872 +/- 5 cm (-1) respectively. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations are discussed. Complete basis set (CBS) ab initio studies at MP2 level reveal reliable energetics for all four n-butylbenzene conformers observed in earlier two-color REMPI (resonance enhanced multiphoton ionization) spectra. For the S 0 state, the energies of conformer III, IV and V are above conformer I by 130, 289, 73 cm (-1), respectively. Furthermore, the combination of the CBS calculations with the measured REMPI, MATI spectra allowed the determination of the energetics of all four conformers in the S 1 and D 0 states.  相似文献   

10.
Intramolecular exciplex formation in macromolecules between VK and related V5BK units has been detected. Exciplexes formed between guest and host units belonging to different macrochains are observed for the solid VK-V5BK system. The results obtained substantiate the conclusion about the intermolecular nature of excimers in solid PVK.  相似文献   

11.
The dynamical and conformational behaviour of a flexible tetrabenzocyclododecatetraene derivative exhibiting a columnar mesophase has been studied by a combination of deuteron solid state NMR spectroscopy and molecular dynamics (MD) simulations. As shown by two-dimensional (2D) exchange NMR, the mesophase is characterized by slow axial reorientations (∼10-3s) of single molecular units where the phenylene rings exhibit a well-defined quasi-fourfold potential, while the 2D spectra of the core methylene sites are sensitive to the molecular conformation and reorientation mechanism. Motional narrowing of one-dimensional (1D) spectra reveals additional fast librations due to the internal flexibility of the mesogenic moiety. The various reorientation pathways comprising interconversions and pseudo-rotations between different energetically stable conformations are elucidated on a microscopic level by molecular dynamics simulations. The mesophase dynamics is ascribed to a complex axial motion involving rotational jumps combined with a pseudo-rotation between two symmetry related sofa forms. This is confirmed quantitatively by comparing the experimental 2D NMR spectra of the core methylene sites and the simulations which are based on the molecular geometries obtained by MD simulations. The lineshapes of one- and two-dimensional spectra of magnetically aligned samples specific to the orientation behaviour of the sofa conformer are discussed.  相似文献   

12.
Dielectric relaxation times are often interpreted in terms of the reorientation of dipolar species or aggregates. The relevant time correlation function contains, however, cross terms between dipole moments of different particles. In the static case, these cross terms are accounted for by the Kirkwood factor g(K). Theories and molecular dynamics simulations suggest that such cross correlations may also affect the time-dependent properties, as reflected in the dielectric spectra. We present an experimental method for detecting effects of such cross correlations in dielectric spectra by a comparative analysis of dielectric and magnetic relaxation data. We demonstrate that such collective contributions can substantially affect dielectric relaxation. Experiments for n-pentanol (g(K)=3.06 at 298 K) and 2,2-dimethyl-3-ethyl-pentane-3-ol (g(K)=0.59) and their solutions in carbon tetrachloride show that in systems with g(K)>1, the cross correlations slow down dielectric relaxation. In systems with g(K)<1, dielectric relaxation is enhanced. The results conform to theoretical predictions by Madden and Kivelson [Adv. Chem. Phys. 56, 467 (1984)] and to results of molecular dynamics simulations. The relaxation enhancement by cross terms in the case of g(K)<1 is difficult to rationalize by conventional models of dielectric relaxation.  相似文献   

13.
14.
Local compositions in supercritical and near-critial fluids may differ substantially from bulk compositions, and such differences have important effects on spectroscopic observations, phase equilibria, and chemical kinetics. Here, we compare such determinations around a solute probe dissolved in CO2-expanded methanol and acetone at 25 degrees C from solvatochromic experiments with molecular dynamics simulations. UV/vis and steady-state fluorescence measurements of the dye Coumarin 153 in the expanded liquid phase indicate preferential solvation in both the S0 and S1 states by the organic species. Simple dielectric continuum models are used to estimate local compositions from the spectroscopic data and are compared to molecular dynamics simulations of a single C153 molecule dissolved in the liquid phase at bubble point conditions. The simulations provide information about the local solvent structure around C153. They suggest the presence of large solvent clustering near the electron-withdrawing side of the probe. Preferential solvation exists in both the S0 and S1 states, but a large disagreement between simulation and experiment exists in the S1 state. Potential reasons for this disparity are discussed.  相似文献   

15.
The present molecular dynamics study is an investigation of the temperature (T) dependence of liquid hexane coarse-grained potentials optimized with the Iterative Boltzmann Inversion method. An approach for the derivation of coarse-grained potentials at temperatures T different from the optimization temperature T(0) has recently been proposed for ethylbenzene. This method is based on the use of a T-dependent scaling factor f(T) to generate ethylbenzene potentials at T≠T(0). The approach is here extended to hexane, considering different reference temperatures T(0) and functional forms for f(T). From our simulations, it appears that the accuracy of the temperature transferability depends simultaneously on the T(0) chosen and the analytic form of f(T). Such a behavior is suppressed by the use of a new 2-point interpolation formula to generate coarse-grained potentials as a function of T. This scheme employs a linear interpolation based on the optimization of coarse-grained potentials at two reference temperatures, T(L) and T(U), with T(L)≤T≤T(U). Accurate coarse-grained simulations of liquid hexane can be performed using the new interpolation scheme. The results are encouraging for the use of potential interpolations as a practical means for devising coarse-grained potentials within a wider temperature range.  相似文献   

16.
Fourier transform infrared spectroscopy is a popular method for the experimental investigation of hydrogen-bonded aggregates, but linking spectral information to microscopic information on aggregate size distribution and aggregate architecture is an arduous task. Static electronic structure calculations with an implicit solvent model, Car-Parrinello molecular dynamics (CPMD) using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and classical molecular dynamics simulations for the all-atom version of the optimized parameters for liquid simulations (OPLS-AA) force field were carried out for an ensemble of 1-hexanol aggregates solvated in n-hexane. The initial configurations for these calculations were size-selected from a distribution of aggregates obtained from a large-scale Monte Carlo simulation. The vibrational spectra computed from the static electronic structure calculations for monomers and dimers and from the CPMD simulations for aggregates up to pentamers demonstrate the extent of the contribution of dangling or nondonating hydroxyl groups found in linear and branched aggregates to the "monomeric" peak. Furthermore, the computed spectra show that there is no simple relationship between peak shift and aggregate size nor architecture, but the effect of hydrogen-bond cooperativity is shown to differentiate polymer-like (cooperative) and dimer-like (noncooperative) hydrogen bonds in the vibrational spectrum. In contrast to the static electronic structure calculations and the CPMD simulations, the classical molecular dynamics simulations greatly underestimate the vibrational peak shift due to hydrogen bonding.  相似文献   

17.
This paper presents Stokesian dynamics simulations of experiments involving one or two charged colloids near either a single charged wall or confined between parallel charged walls. Equilibrium particle-particle and particle-wall interactions are interpreted from dynamic particle trajectories in simulations involving (1) a single particle levitated above a wall, (2) two particles below a wall, and (3) two particles confined between two parallel walls. By specifying only repulsive electrostatic Derjaguin-Landau-Verwey-Overbeek (DLVO) potentials and including multibody hydrodynamics, we successfully recover expected potentials in some cases, while anomalous attraction is observed in other cases. Attraction inferred in the latter simulations displays quantitative agreement with literature measurements when particle dynamics are interpreted using reported analyses. Because anomalous attraction is reproduced in simulations using only electrostatic repulsive DLVO potentials, our results reveal the one-dimensional analyses to be invalid for configurations that are inherently multidimensional via multibody hydrodynamics. Parameters related to experimental sampling of particle dynamics are also found to be critical for obtaining accurate potentials. We explain the anomalous attraction in each experiment using effective potentials, which can be employed in an a priori fashion to assist the confident design of future experiments involving interfacial and confined colloids. Ultimately, our findings reveal the importance of dimensionality and multibody hydrodynamics for understanding nonequilibrium dynamics of colloids near surfaces.  相似文献   

18.
We have developed new force field and parameters for copper(I) and mercury(II) to be used in molecular dynamics simulations of metalloproteins. Parameters have been derived from fitting of ab initio interaction potentials calculated at the MP2 level of theory, and results compared to experimental data when available. Nonbonded parameters for the metals have been calculated from ab initio interaction potentials with TIP3P water. Due to high charge transfer between Cu(I) or Hg(II) and their ligands, the model is restricted to a linear coordination of the metal bonded to two sulfur atoms. The experimentally observed asymmetric distribution of metal ligand bond lengths (r) is accounted for by the addition of an anharmonic (r3) term in the potential. Finally, the new parameters and potential, introduced into the CHARMM force field, are tested in short molecular dynamics simulations of two metal thiolates fragments in water. (Brooks BR et al. J Comput Chem 1983, 4, 1987.1).  相似文献   

19.
A new soluble donor‐acceptor type poly(N‐vinylcarbazole)‐covalently functionalized graphene oxide (GO‐PVK) has been synthesized by reaction of DDAT (S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐aceticacid)trithiocarbonate)‐PVK with GO‐toluene‐2,4‐diisocynate. The incorporation of sufficient amount of PVK chains makes the modified GO nanosheets readily dispersible in organic solvents. The resulting material exhibits an enhanced solubility of 10 mg/mL in organic solvents. Covalent grafting of PVK onto the edge and surface of GO nanosheets did not change the carbazole absorption in the ultraviolet region, but substantially reduced the absorption intensity of GO in the visible region. The intensity of the emission band of GO‐PVK at 437 nm was a little bit quenched when compared with that of DDAT‐PVK, suggesting intramolecular quenching from PVK to GO. Such intramolecular quenching process may involve energy or electron transfer between the excited singlet states of the PVK moiety and the GO moiety. The HOMO/LUMO values and the energy bandgap of GO‐PVK experimentally estimated by the onset of the redox potentials are ?5.60, ?3.58, and 2.02 eV, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2642–2649, 2010  相似文献   

20.
Cyclopropanone exhibits an intriguing phenomenon that the fluorescence from the S(1) state disappears below 365 nm. This is ascribed to the ultrafast S(1) → S(0) internal conversion process via conical intersection, which deprives opportunity of the fluorescence emission. In this work, we have used ab initio based surface hopping dynamics method to study vibrational-mode-dependent S(1) → S(0) internal conversion of cyclopropanone. A new conical intersection between the S(1) and S(0) states is determined by the state-averaged CASSCF/cc-pVDZ calculations, which is confirmed to play a critical role in the ultrafast S(1) → S(0) internal conversion by the nonadiabatic dynamics simulations. It is found that the internal conversion occurs more efficiently when the initial kinetic energies are distributed in the four vibrational modes related to the C═O group, especially in the C-O stretching and the O-C-C-C out-of-plane torsional modes. Meanwhile, the S(1) lifetime and the time scale of the S(1) → S(0) internal conversion are estimated by the ab initio based dynamics simulations, which is consistent with the ultrafast S(1) → S(0) internal conversion and provides further evidence that the ultrafast internal conversion is responsible for the fluorescence disappearance of cyclopropanone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号