首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When solving multi-objective optimization problems (MOPs) with big data, traditional multi-objective evolutionary algorithms (MOEAs) meet challenges because they demand high computational costs that cannot satisfy the demands of online data processing involving optimization. The gradient heuristic optimization methods show great potential in solving large scale numerical optimization problems with acceptable computational costs. However, some intrinsic limitations make them unsuitable for searching for the Pareto fronts. It is believed that the combination of these two types of methods can deal with big MOPs with less computational cost. The main contribution of this paper is that a multi-objective memetic algorithm based on decomposition for big optimization problems (MOMA/D-BigOpt) is proposed and a gradient-based local search operator is embedded in MOMA/D-BigOpt. In the experiments, MOMA/D-BigOpt is tested on the multi-objective big optimization problems with thousands of variables. We also combine the local search operator with other widely used MOEAs to verify its effectiveness. The experimental results show that the proposed algorithm outperforms MOEAs without the gradient heuristic local search operator.  相似文献   

2.
In recent decades, several multi-objective evolutionary algorithms have been successfully applied to a wide variety of multi-objective optimization problems. Along the way, several new concepts, paradigms and methods have emerged. Additionally, some authors have claimed that the application of multi-objective approaches might be useful even in single-objective optimization. Thus, several guidelines for solving single-objective optimization problems using multi-objective methods have been proposed. This paper offers a survey of the main methods that allow the use of multi-objective schemes for single-objective optimization. In addition, several open topics and some possible paths of future work in this area are identified.  相似文献   

3.
Subset simulation is an efficient Monte Carlo technique originally developed for structural reliability problems, and further modified to solve single-objective optimization problems based on the idea that an extreme event (optimization problem) can be considered as a rare event (reliability problem). In this paper subset simulation is extended to solve multi-objective optimization problems by taking advantages of Markov Chain Monte Carlo and a simple evolutionary strategy. In the optimization process, a non-dominated sorting algorithm is introduced to judge the priority of each sample and handle the constraints. To improve the diversification of samples, a reordering strategy is proposed. A Pareto set can be generated after limited iterations by combining the two sorting algorithms together. Eight numerical multi-objective optimization benchmark problems are solved to demonstrate the efficiency and robustness of the proposed algorithm. A parametric study on the sample size in a simulation level and the proportion of seed samples is performed to investigate the performance of the proposed algorithm. Comparisons are made with three existing algorithms. Finally, the proposed algorithm is applied to the conceptual design optimization of a civil jet.  相似文献   

4.
Due to the vagaries of optimization problems encountered in practice, users resort to different algorithms for solving different optimization problems. In this paper, we suggest and evaluate an optimization procedure which specializes in solving a wide variety of optimization problems. The proposed algorithm is designed as a generic multi-objective, multi-optima optimizer. Care has been taken while designing the algorithm such that it automatically degenerates to efficient algorithms for solving other simpler optimization problems, such as single-objective uni-optimal problems, single-objective multi-optima problems and multi-objective uni-optimal problems. The efficacy of the proposed algorithm in solving various problems is demonstrated on a number of test problems chosen from the literature. Because of its efficiency in handling different types of problems with equal ease, this algorithm should find increasing use in real-world optimization problems.  相似文献   

5.
This paper presents a novel optimization framework based on the Fireworks Algorithm for Big Data Optimization problems. Indeed, the proposed framework is composed of two optimization algorithms. A single objective Fireworks Algorithm and a multi-objective Fireworks Algorithm are proposed for solving the Big Optimization of Signals problem “Big-OPT” which belongs to the Big Data Optimization problems class. The single objective Fireworks Algorithm adopts a modified search mechanism to ensure rapidity and preserve the explorative capacities of the basic Fireworks Algorithm. Afterward, the algorithm is extended to handle multi-objective optimization of Big-OPT with a supplementary special sparks phase and a novel strategy for next generation selection. To validate the performance of the framework, extensive tests on six EEG datasets are performed. The framework is also compared with several approaches from recent state of the art. The study concludes the competitive performance of the proposed framework in comparison with the other techniques reported in this paper.  相似文献   

6.
With increasing concern about global warming and haze, environmental issue has drawn more attention in daily optimization operation of electric power systems. Economic emission dispatch (EED), which aims at reducing the pollution by power generation, has been proposed as a multi-objective, non-convex and non-linear optimization problem. In a practical power system, the problem of EED becomes more complex due to conflict between the objectives of economy and emission, valve-point effect, prohibited operation zones of generating units, and security constraints of transmission networks. To solve this complex problem, an algorithm of a multi-objective multi-population ant colony optimization for continuous domain (MMACO_R) is proposed. MMACO_R reconstructs the pheromone structure of ant colony to extend the original single objective method to multi-objective area. Furthermore, to enhance the searching ability and overcome premature convergence, multi-population ant colony is also proposed, which contains ant populations with different searching scope and speed. In addition, a Gaussian function based niche search method is proposed to enhance distribution and accuracy of solutions on the Pareto optimal front. To verify the performance of MMACO_R in different multi-objective problems, benchmark tests have been conducted. Finally, the proposed algorithm is applied to solve EED based on a six-unit system, a ten-unit system and a standard IEEE 30-bus system. Simulation results demonstrate that MMACO_R is effective in solving economic emission dispatch in practical power systems.  相似文献   

7.
Multi-objective vehicle routing problems   总被引:1,自引:0,他引:1  
Routing problems, such as the traveling salesman problem and the vehicle routing problem, are widely studied both because of their classic academic appeal and their numerous real-life applications. Similarly, the field of multi-objective optimization is attracting more and more attention, notably because it offers new opportunities for defining problems. This article surveys the existing research related to multi-objective optimization in routing problems. It examines routing problems in terms of their definitions, their objectives, and the multi-objective algorithms proposed for solving them.  相似文献   

8.
《Optimization》2012,61(7):823-854
In this article, a new mechanism to spread the solutions generated by a multi-objective evolutionary algorithm is proposed. This approach is based on the use of stripes that are applied in objective function space and is independent of the search engine adopted. Additionally, it overcomes some of the drawbacks of other previous proposals such as the ?-dominance method. In order to validate the proposed approach, it is coupled to a multi-objective particle swarm optimizer and its performance is assessed with respect to that of state-of-the-art algorithms, using standard test problems and performance measures taken from the specialized literature. The results indicate that the proposed approach is a viable diversity maintenance mechanism that can be incorporated to any multi-objective metaheuristic used for multi-objective optimization.  相似文献   

9.
An approach to non-convex multi-objective optimization problems is considered where only the values of objective functions are required by the algorithm. The proposed approach is a generalization of the probabilistic branch-and-bound approach well applicable to complicated problems of single-objective global optimization. In the present paper the concept of probabilistic branch-and-bound based multi-objective optimization algorithms is discussed, and some illustrations are presented.  相似文献   

10.
In most multi-objective optimization problems we aim at selecting the most preferred among the generated Pareto optimal solutions (a subjective selection among objectively determined solutions). In this paper we consider the robustness of the selected Pareto optimal solution in relation to perturbations within weights of the objective functions. For this task we design an integrated approach that can be used in multi-objective discrete and continuous problems using a combination of Monte Carlo simulation and optimization. In the proposed method we introduce measures of robustness for Pareto optimal solutions. In this way we can compare them according to their robustness, introducing one more characteristic for the Pareto optimal solution quality. In addition, especially in multi-objective discrete problems, we can detect the most robust Pareto optimal solution among neighboring ones. A computational experiment is designed in order to illustrate the method and its advantages. It is noteworthy that the Augmented Weighted Tchebycheff proved to be much more reliable than the conventional weighted sum method in discrete problems, due to the existence of unsupported Pareto optimal solutions.  相似文献   

11.
If Differential Evolution (DE) is applied to multi-objective optimization problems, some of its features like automatic problem-specific step-size adaptation gets lost. This can be resolved by modifying the DE equations. Three strategies are proposed and compared with existing algorithms. It is shown, that the proposed strategies deliver a superior convergence and preserve the positive characteristics of DE known from solving mono-objective optimization problems. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The huge computational overhead is the main challenge in the application of community based optimization methods, such as multi-objective particle swarm optimization and multi-objective genetic algorithm, to deal with the multi-objective optimization involving costly simulations. This paper proposes a Kriging metamodel assisted multi-objective particle swarm optimization method to solve this kind of expensively black-box multi-objective optimization problems. On the basis of crowding distance based multi-objective particle swarm optimization algorithm, the new proposed method constructs Kriging metamodel for each expensive objective function adaptively, and then the non-dominated solutions of the metamodels are utilized to guide the update of particle population. To reduce the computational cost, the generalized expected improvements of each particle predicted by metamodels are presented to determine which particles need to perform actual function evaluations. The suggested method is tested on 12 benchmark functions and compared with the original crowding distance based multi-objective particle swarm optimization algorithm and non-dominated sorting genetic algorithm-II algorithm. The test results show that the application of Kriging metamodel improves the search ability and reduces the number of evaluations. Additionally, the new proposed method is applied to the optimal design of a cycloid gear pump and achieves desirable results.  相似文献   

13.
基于存档策略的多目标优化的遗传算法及其收敛性分析   总被引:1,自引:0,他引:1  
设计了一种用遗传算法求解多目标优化问题的有效方法——基于存档策略的多目标优化的遗传算法,并讨论了此算法的收敛性.首先给出档案的定义,设计出基于支配关系下的带有存档策略遗传算法,并通过算例检验了算法的有效性;然后引入了两档案间的距离的概念,在此距离定义的基础上证明了算法在概率意义下是收敛的.  相似文献   

14.
Despite the successes of both multi-objective optimization and uncertainty handling techniques in reservoir flood control operation, no work has been done yet on developing and investigating dynamic multi-objective optimization models for this problem. In this work, a dynamic multi-objective optimization model with interactivity and uncertainty was developed for the real-time reservoir flood control operation. Accordingly, a dynamic multi-objective optimization algorithmic framework with two newly designed change reaction strategies was proposed for solving the proposed dynamic model. Following the proposed algorithmic framework, any evolutionary multi-objective optimization algorithm can be converted into a dynamic optimizer. After investigating the difficulty variation of the proposed dynamic model, the effectiveness and robustness of the proposed algorithmic framework have been validated based on experiential studies on two typical floods of Ankang reservoir.  相似文献   

15.
The problem of optimally designing a trajectory for a space mission is considered in this paper. Actual mission design is a complex, multi-disciplinary and multi-objective activity with relevant economic implications. In this paper we will consider some simplified models proposed by the European Space Agency as test problems for global optimization (GTOP database). We show that many trajectory optimization problems can be quite efficiently solved by means of relatively simple global optimization techniques relying on standard methods for local optimization. We show in this paper that our approach has been able to find trajectories which in many cases outperform those already known. We also conjecture that this problem displays a “funnel structure” similar, in some sense, to that of molecular optimization problems.  相似文献   

16.
A multi-objective evolutionary algorithm which can be applied to many nonlinear multi-objective optimization problems is proposed. Its aim is to quickly obtain a fixed size Pareto-front approximation. It adapts ideas from different multi-objective evolutionary algorithms, but also incorporates new devices. In particular, the search in the feasible region is carried out on promising areas (hyperspheres) determined by a radius value, which decreases as the optimization procedure evolves. This mechanism helps to maintain a balance between exploration and exploitation of the search space. Additionally, a new local search method which accelerates the convergence of the population towards the Pareto-front, has been incorporated. It is an extension of the local optimizer SASS and improves a given solution along a search direction (no gradient information is used). Finally, a termination criterion has also been proposed, which stops the algorithm if the distances between the Pareto-front approximations provided by the algorithm in three consecutive iterations are smaller than a given tolerance. To know how far two of those sets are from each other, a modification of the well-known Hausdorff distance is proposed. In order to analyze the algorithm performance, it has been compared to the reference algorithms NSGA-II and SPEA2 and the state-of-the-art algorithms MOEA/D and SMS-EMOA. Several quality indicators have been considered, namely, hypervolume, average distance, additive epsilon indicator, spread and spacing. According to the computational tests performed, the new algorithm, named FEMOEA, outperforms the other algorithms.  相似文献   

17.
The aim of this paper is the development of an algorithm to find the critical points of a box-constrained multi-objective optimization problem. The proposed algorithm is an interior point method based on suitable directions that play the role of gradient-like directions for the vector objective function. The method does not rely on an “a priori” scalarization and is based on a dynamic system defined by a vector field of descent directions in the considered box. The key tool to define the mentioned vector field is the notion of vector pseudogradient. We prove that the limit points of the solutions of the system satisfy the Karush–Kuhn–Tucker (KKT) first order necessary condition for the box-constrained multi-objective optimization problem. These results allow us to develop an algorithm to solve box-constrained multi-objective optimization problems. Finally, we consider some test problems where we apply the proposed computational method. The numerical experience shows that the algorithm generates an approximation of the local optimal Pareto front representative of all parts of optimal front.  相似文献   

18.
Dynamic optimization and multi-objective optimization have separately gained increasing attention from the research community during the last decade. However, few studies have been reported on dynamic multi-objective optimization (dMO) and scarce effective dMO methods have been proposed. In this paper, we fulfill these gabs by developing new dMO test problems and new effective dMO algorithm. In the newly designed dMO problems, Pareto-optimal decision values (i.e., Pareto-optimal solutions: POS) or both POS and Pareto-optimal objective values (i.e., Pareto-optimal front: POF) change with time. A new multi-strategy ensemble multi-objective evolutionary algorithm (MS-MOEA) is proposed to tackle the challenges of dMO. In MS-MOEA, the convergence speed is accelerated by the new offspring creating mechanism powered by adaptive genetic and differential operators (GDM); a Gaussian mutation operator is employed to cope with premature convergence; a memory like strategy is proposed to achieve better starting population when a change takes place. In order to show the advantages of the proposed algorithm, we experimentally compare MS-MOEA with several algorithms equipped with traditional restart strategy. It is suggested that such a multi-strategy ensemble approach is promising for dealing with dMO problems.  相似文献   

19.
In many practical problems such as engineering design problems, criteria functions cannot be given explicitly in terms of design variables. Under this circumstance, values of criteria functions for given values of design variables are usually obtained by some analyses such as structural analysis, thermodynamical analysis or fluid mechanical analysis. These analyses require considerably much computation time. Therefore, it is not unrealistic to apply existing interactive optimization methods to those problems. On the other hand, there have been many trials using genetic algorithms (GA) for generating efficient frontiers in multi-objective optimization problems. This approach is effective in problems with two or three objective functions. However, these methods cannot usually provide a good approximation to the exact efficient frontiers within a small number of generations in spite of our time limitation. The present paper proposes a method combining generalized data envelopment analysis (GDEA) and GA for generating efficient frontiers in multi-objective optimization problems. GDEA removes dominated design alternatives faster than methods based on only GA. The proposed method can yield desirable efficient frontiers even in non-convex problems as well as convex problems. The effectiveness of the proposed method will be shown through several numerical examples.  相似文献   

20.
Pareto-optimality conditions are crucial when dealing with classic multi-objective optimization problems. Extensions of these conditions to the fuzzy domain have been discussed and addressed in recent literature. This work presents a novel approach based on the definition of a fuzzily ordered set with a view to generating the necessary conditions for the Pareto-optimality of candidate solutions in the fuzzy domain. Making use of the conditions generated, one can characterize fuzzy efficient solutions by means of carefully chosen mono-objective problems and Karush-Kuhn-Tucker conditions to fuzzy non-dominated solutions. The uncertainties are inserted into the formulation of the studied fuzzy multi-objective optimization problem by means of fuzzy coefficients in the objective function. Some numerical examples are analytically solved to illustrate the efficiency of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号