首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
Energy transfer properties of novel coumarin-perylene bisimide dendrimer are studied by means of steady state and time-resolved UV/vis spectroscopy. At low donor excitation density fast (transfer rate approximately 10 ps(-1)) and efficient (quantum yield approximately 99.5%) donor-acceptor energy transfer is observed. The random distributions of donor-acceptor orientations and distances result in nonexponential energy transfer kinetics. The energy transfer remains independent of excitation density up to densities corresponding to one absorbed photon per 10 dendrimer molecules. At higher excitation densities the transfer rate is found to increase due to excitation of multiple donors per dendrimer. Control of the donor-acceptor energy transfer rate is achieved by pre-excitation of the acceptor and monitored by prepump-pump-probe experiments, which show that the energy transfer rate can be decreased by a factor of 2. The relative orientations of transition dipole moments in the donor and acceptor molecules are found to be one of the key factors determining the energy transfer dynamics at high excitation densities.  相似文献   

2.
Electronic excitation energy transfer (EEET) between molecules of carbocyanine dyes, which form noncovalent complexes with DNA, has been studied by picosecond spectroscopy. Three oxacarbocyanine dyes have been used as electronic excitation energy donors, and 3,3′-diethylthiacarbocyanine iodide has served as an acceptor dye. An analysis of the kinetic dependences permitted obtaining the data on distribution of the distances in donor-acceptor pairs upon EEET. The effect of the acceptor concentration on the parameters of distribution of its molecules in the quenching microphase has been revealed.  相似文献   

3.
The migration and diffusion modulated excitation energy transfer has been studied in a new dye pair 7-diethylamino-4-methylcoumarin (donor) to 3,3'-dimethyloxacarbocyanine iodide (acceptor) by steady-state and picosecond time-resolved spectroscopy. To reduce the artifact of self-absorption, at high donor concentrations, the time-resolved studies have been carried out in thin films of polyvinyl alcohol (solid matrix) and in methanol (liquid phase) at front-face geometry of excitation. The Forster-type (nonradiative) energy transfer [Discuss. Faraday Soc. 27, 7 (1959)] takes place directly from donor to acceptor in case of solid matrix, while Yokota-Tanimoto model [J. Phys. Soc. Jpn. 22, 779 (1967)] for diffusion has been found to be operating in the liquid phase. It has been found here that the high interaction strength between donor and acceptor molecules as compared to that among donors masks the effect of energy migration and diffusion at high donor concentrations. The rate and efficiency of energy transfer increase with increasing the acceptor concentration. This has been confirmed by the study of acceptor kinetics.  相似文献   

4.
Polymers prepared by RAFT polymerisation containing acenaphthyl energy donors and a terminal anthryl energy acceptor have a narrow molecular weight distribution and exhibit excitation energy transfer efficiencies up to 70%.  相似文献   

5.
We investigate the excitation energy transfer in a guest-host molecular system consisting of a pentacene derivative, namely 6,13-bis(2,6-dimethylphenyl)pentacene (DMPP), doped into tris(8-hydroxyquinolinato)aluminum (Alq(3)) using steady-state and time-resolved photoluminescence (PL) spectroscopy. The concentration dependent energy transfer rate and efficiency are calculated and analyzed in terms of the F?rster resonance energy transfer model. A relatively long excitation transfer time ( approximately 0.6-3.4 ns depending on the DMPP concentration) and a large transfer radius (31-36 A) are obtained. The F?rster radius calculated directly from the Alq(3) PL-DMPP absorption spectral overlap (26 A) is smaller than the transfer radii obtained from the PL studies, which suggests that excitation energy migration within Alq(3) plays an important role in the energy transfer process, effectively elongating the transfer radius and increasing the transfer rate and efficiency.  相似文献   

6.
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.  相似文献   

7.
A micelle‐like hybrid natural–artificial light‐harvesting nanosystem was prepared through protein‐framed electrostatic self‐assembly of phycocyanin and a four‐armed porphyrin star polymer. The nanosystem has a special structure of pomegranate‐like unimolecular micelle aggregate with one phycocyanin acceptor in the center and multiple porphyrin donors in the shell. It can inhibit donor self‐quenching effectively and display efficient transfer of excitation energy (about 80.1 %) in water. Furthermore, the number of donors contributing to a single acceptor could reach as high as about 179 in this nanosystem.  相似文献   

8.
Ultrafast transient absorption spectroscopy is performed on a novel donor-acceptor-donor triad made of two identical bisthiophene derivatives as electron donors and a central perylenediimide moiety as electron acceptor. The triad is extended at both ends by covalently bound siloxane chains that confer self-organisation into thin smectic films at ambient temperature. When diluted in chloroform, selective excitation of the donor moiety leads to resonance energy transfer within 130 fs to the acceptor moiety, followed by the formation of a charge transfer (CT) state in ~3 ps. The CT state recombines entirely on a 55 ps time scale. In the liquid crystal films, excitonic intermolecular coupling leads to significant changes in the dynamics. Most remarkably, ultrafast intra- and intermolecular CT state formation occurs in about 60 fs, i.e. on a time scale comparable to electronic coherence times. While the intra-molecular CT states recombine on the same time scale as in solution or even faster, inter-molecular CT states live for about 1 ns. Last, triplet states of the perylenediimide moiety dominate the differential absorption after ~1 ns. We anticipate that the fast recombination of intra-molecular CT states and the triplet state formation may severely limit the photo-current in these materials.  相似文献   

9.
Excitation energy migration (EM) and assisted energy transfer (ET) properties of a few oligo(p-phenylenevinylene) (OPV) based organogelators with different end functional groups have been studied using picosecond time-resolved emission spectroscopy (TRES). EM was found to be more efficient in OPV gelators with small end functional groups (OPV3-4) when compared to that of the gelators with bulky end groups (OPV1-2) in the gel state. TRES studies at elevated temperature and in chloroform solution highlight the role of the self-assembled scaffolds in assisting the EM and ET processes. Increase in temperature and solvent polarity leads to the aggregate breaking and hence adversely affects the EM and ET efficiencies. The effect of EM efficiency on the fluorescence resonance energy transfer (FRET) properties of the OPV gels was studied by using OPV1 and OPV3 as the donors and OPV5 as the acceptor. Better transfer of excitation energy was observed in the donor system (OPV3) having higher EM efficiency even at very low concentration (3.1 mol%) of the acceptor molecules, whereas ET efficiency was lower in the donor system (OPV1) with low EM efficiency.  相似文献   

10.
Luminescent lanthanide chelates have unusual spectroscopic characteristics that make them valuable alternative probes to conventional organic fluorophores. However, fundamental parameters such as their quantum yield, and radiative and nonradiative decay rates have been difficult or impossible to measure. We have developed a simple and robust method based on resonance energy transfer to accurately measure these parameters. In addition, the excitation/emission process in lanthanide chelates involves several steps, and we are able to quantify each step. These include excitation of an organic antenna, transfer of energy from the antenna to lanthanide, and then lanthanide emission. Overall, the parameters show that lanthanide chelates can be efficient long-lived emitters, making them sensitive detection reagents and excellent donors in resonance energy transfer. The method is also shown to be applicable to photophysical characterization of red-emitting dyes, which are difficult to characterize by conventional means.  相似文献   

11.
The photophysics of a dendrimer containing four donor chromophores and one acceptor chromophore are studied at the single-molecule level. Upon excitation of the donors exclusive acceptor emission is observed due to efficient F?rster energy transfer. For 70% of the molecules donor emission is observed after bleaching of the acceptor, leading to a reduction of the F?rster energy transfer efficiency. Furthermore, we demonstrate that in this molecular system the donor chromophores do not bleach by a triplet-sensitized photooxidation.  相似文献   

12.
Using time-resolved in μS range luminescence spectroscopy, we observed at 20°C the emission of chlorophyll a, pheophytin a and chlorophyll a-lutein mixture solutions. This delayed emission exhibits several maxima in the650–750 nm region. The positions and kinetics of decay of delayed emission bands depend on chlorophyll concentration, and vary as a result of pheophytinization and addition of lutein. Our results can be explained by supposition that upon excitation, charge transfer species are formed in various pigment complexes. The back electron transfer reactions yield chlorophyll excited singlet states contributing to observed delayed emission. Delay in emission seems to be due also to the trapping of excitation on the triplet states of various forms of pigment and its detrapping with the participation of thermal energy followed by energy transfer to the forms of pigment characterized by different decay times.  相似文献   

13.
A key and long standing question regarding the function of photosynthetic systems concerns the advantages that delocalized electronic excitations and their coherent dynamics could offer to robust and efficient energy transfer within and between photosynthetic light-harvesting complexes. Here we discuss how the framework of entanglement can be used to characterize the strength and spatial distribution of electronic coherences in biomolecular aggregates, why this is interesting, and how one can go about investigating possible relations between non-vanishing electronic coherences and efficient excitation transfer from donors to acceptors. As an example we discuss how certain coherences may correlate to efficient energy transfer in the Fenna-Mathews-Olson complex. Perspectives about understanding advantages of coherence-assisted energy transfer are discussed.  相似文献   

14.
Energy transport in a short helical peptide in chloroform solution is studied by time-resolved femtosecond spectroscopy and accompanying nonequilibrium molecular dynamics (MD) simulations. In particular, the heat transport after excitation of an azobenzene chromophore attached to one terminus of the helix with 3 eV (UV) photons is compared to the excitation of a peptide C=O oscillator with 0.2 eV (IR) photons. The heat in the helix is detected at various distances from the heat source as a function of time by employing vibrational pump-probe spectroscopy. As a result, the carbonyl oscillators at different positions along the helix act as local thermometers. The experiments show that heat transport through the peptide after excitation with low-energy photons is at least 4 times faster than after UV excitation. On the other hand, the heat transport obtained by nonequilibrium MD simulations is largely insensitive to the kind of excitation. The calculations agree well with the experimental results for the low-frequency case; however, they give a factor of 5 too fast energy transport for the high-energy case. Employing instantaneous normal mode calculations of the MD trajectories, a simple harmonic model of heat transport is adopted, which shows that the heat diffusivity decreases significantly at temperatures initially reached by high-energy excitation. This finding suggests that the photoinduced energy gets trapped, if it is deposited in high amounts. The various competing mechanisms, such as vibrational T(1) relaxation, resonant transfer between excitonic states, cascading down relaxation, and low-frequency mode transfer, are discussed in detail.  相似文献   

15.
The effect of thin film morphology on energy transfer and migration in host-guest systems involving a phenylene-ethynylene oligomer matrix doped with colloidally prepared CdSe quantum dots is studied. Using correlated spectroscopy techniques including DSC, Raman, and temperature-dependent photoluminescence, we find that annealing the film produces continuous domain structures that enhance excitation migration by extending the excitation diffusion length. Under optical excitation, the thin films exhibit rapid melting of the host lattice, followed by resonant energy transfer to the CdSe QD guests. The ability to optically manipulate the structure and subsequently optically detect this change makes this material an important candidate for an all-optical read-write memory system.  相似文献   

16.
Electronic excitation energy transfer between molecules of carbocyanine dyes noncovalently bound to DNA was studied. 3,3′,9-Triethyl-5,5′-dimethyloxacarbocyanine iodide and 3,3′-dimethyl-9-ethyloxacarbocyanine iodide were used as energy donors, and 3,3′-diethylthiacarbocyanine iodide served as an acceptor dye. The fluorescence decay kinetics of the donors and its quenching by the acceptor in the presence of DNA were measured. The microphase model was used for interpretation of the experimental data, with allowance for concentrating dye molecules in the vicinity of DNA molecules.  相似文献   

17.
江华  许慧君 《物理化学学报》2001,17(12):1092-1096
合成了一个带有末端取代的能量给体-萘和能量受体-蒽的开链冠醚(DSA).吸收光谱表明两个发色团之间在基态时没有相互作用.选择性激发萘观察到萘的荧光强度下降, 同时伴随着蒽的发射增强, 表明发生了从萘至蒽的单重态-单重态能量转移.能量转移效率受溶剂极性的影响.可以认为在极性小的溶剂如苯中-OCH2CH2O-单元中的中心C-C键主要以反式存在,而在极性大的溶剂如乙腈中则以邻交叉式为主.因此,开链冠醚末端取代的萘和蒽之间的距离随着溶剂极性的增大,能量转移效率却随之降低.表明能量转移可以用于探测以柔性配体键连接的给体-受体体系在不同极性溶剂中的构象变化特性.  相似文献   

18.
UV-Vis DRS and photoluminescence (PL) spectroscopy, combined with excitation selective Raman spectroscopy, allow us to understand the main optical and vibrational properties of a metal-organic MOF-5 framework. A O(2-)Zn(2+)[rightward arrow] O(-)Zn(+) ligand to metal charge transfer transition (LMCT) at 350 nm, testifies that the Zn(4)O(13) cluster behaves as a ZnO quantum dot (QD). The organic part acts as a photon antenna able to efficiently transfer the energy to the inorganic ZnO-like QD part, where an intense emission at 525 nm occurs.  相似文献   

19.
Triplet energy transfer (TET) from aromatic donors to 1,3,5,7-cyclooctatetraene (COT) is an extreme case of "nonvertical" behavior, where the transfer rate for low-energy donors is considerably faster than that predicted for a thermally activated (Arrhenius) process. To explain the anomalous TET of COT and other molecules, a new theoretical model based on transition state theory for nonadiabatic processes is proposed here, which makes use of the adiabatic potential energy surfaces (PES) of reactants and products, as computed from high-level quantum mechanical methods, and a nonadiabatic transfer rate constant. It is shown that the rate of transfer depends on a geometrical distortion parameter gamma=(2g(2)/kappa(1))(1/2) in which g stands for the norm of the energy gradient in the PES of the acceptor triplet state and kappa(1) is a combination of vibrational force constants of the ground-state acceptor in the gradient direction. The application of the model to existing experimental data for the triplet energy transfer reaction to COT from a series of pi,pi(*) triplet donors, provides a detailed interpretation of the parameters that determine the transfer rate constant. In addition, the model shows that the observed decrease of the acceptor electronic excitation energy is due to thermal activation of C=C bond stretchings and C-C bond torsions, which collectively change the ground-state COT bent conformation (D(2d)) toward a planar triplet state (D(8h)).  相似文献   

20.
F?rster resonance energy transfer (FRET), which involves the nonradiative transfer of excitation energy from an excited donor fluorophore to a proximal ground-state acceptor fluorophore, is a well-characterized photophysical tool. It is very sensitive to nanometer-scale changes in donor-acceptor separation distance and their relative dipole orientations. It has found a wide range of applications in analytical chemistry, protein conformation studies, and biological assays. Luminescent semiconductor nanocrystals (quantum dots, QDs) are inorganic fluorophores with unique optical and spectroscopic properties that could enhance FRET as an analytical tool, due to broad excitation spectra and tunable narrow and symmetric photoemission. Recently, there have been several FRET investigations using luminescent QDs that focused on addressing basic fundamental questions, as well as developing targeted applications with potential use in biology, including sensor design and protein conformation studies. Herein, we provide a critical review of those developments. We discuss some of the basic aspects of FRET applied to QDs as both donors and acceptors, and highlight some of the advantages offered (and limitations encountered) by QDs as energy donors and acceptors compared to conventional dyes. We also review the recent developments made in using QD bioreceptor conjugates to design FRET-based assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号