首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.  相似文献   

2.
Nerium odorum, Linn. (Apocynaceae) is an important evergreen shrub. It is heat, salinity and drought tolerant. Plants with milky sap have medicinal value, mainly cardenolides, flavonoids and terpenes. It is used for wastewater purification and for restoration of riparian woodlands. In view of these facts, the study was conducted for micropropagation of N. odorum. Murashige and Skoog (MS) media supplemented with different concentrations (0.5–10.0 mg/l) of 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and kinetin (Kin) were used singly and in combinations. Among all the growth hormones, 2,4-D was the best for callus induction (75 % in stem and 79 % in leaf) and in combination 2,4-D and BAP (78 % in stem and 81 % in leaf). The day of callus induction started from the 19th to the 37th day. This variation is due to the differences in culture conditions and the age of explants. The fresh and dry weight and moisture content showed good growth of callus, which is used in further studies of alkaloid production. Micropropagation of this plant allows the production of clones at a fast rate and in continuous manner. This work can lead to the development of an efficient protocol for callus induction and other issues.  相似文献   

3.
The effects of various combinations of the two kinds of phytohormones, auxin and cytokinin, on cell growth and production of ginseng saponin and polysaccharide were investigated in suspension cultures ofPanax notoginseng. It was found that a high concentration of kinetin (KT) (7 mg/L) seriously inhibited cell growth, but that of benzyl adenine (BA) did not. Under 0.7 mg/L of cytokinin (i.e., KT and BA), 2,4-dichlorophenoxy acetic acid (2,4-D) at 0.2 mg/L was better for the cell cultures than that at 2 or 20 mg/L; and for both naphthalene acetic acid (NAA) and indole acetic acid (IAA), 20 mg/L was their best level for the cell cultures. The highest cell concentration of 11.9 g/L (by dry wt) was obtained with the combination of 0.2 mg/L of 2,4-D and 0.7 mg/L of BA. The highest saponin content of 13.9% was achieved under 2.0 mg/L IAA and 0.07 mg/L KT; its highest production, i.e., 1.13 g/L, was obtained at 0.2 mg/L of 2,4-D and 0.7 mg/L of KT. Under 20 mg/L NAA and 0.7 mg/L KT, the highest polysaccharide content and production were reached, i.e., 16.4% and 1.86 g/L, respectively. In this work, the effects of phytohormones onP. ginseng cell cultures were also studied. A high saponin production of 1.78 g/L was observed at 10 mg/L of indole butyric acid and 0.1 mg/L of BA, and the highest production of polysaccharide (1.95 g/L) was reached with the combination of 10 mg/L NAA and 0.1 mg/L KT.  相似文献   

4.
In this study, an efficient procedure was developed for callus induction and regeneration of kiwifruit (Actinidia deliciosa) using different organs of shoots developed under in vitro conditions. Effects of explants source and media (M1, 1.0 mg l−1 BA + 2.0 mg l−1 2,4-D–M2, 1.0 mg l−1 NAA + 2.0 mg l−1 2,4-D) on initiation of callus were examined in order to obtain callus for organogenesis. The best callus for plant regeneration was obtained from leaf explants on Murashige and Skoog’s medium (MS) supplemented with M2. Formation of callus from leaf of kiwifruit (A. deliciosa) was cultured in MS medium containing different concentration of N6-benzylaminopurin (BA; 0.0, 1.0, 2.0, 4.0, 6.0, 8.0 mg l−1) for callus proliferation and plant regeneration. Although the first shoot formation was appeared in medium containing 6.0 and 8.0 mg l−1 BA, the best shoots formation was obtained in medium with 4.0 mg l−1 BA.  相似文献   

5.
Kaempferia galanga is an important medicinal plant that is facing threat of extinction owing to indiscriminate and unsustainable harvesting in the wild. Conventional breeding is difficult in this plant, and in vitro multiplication is important to conservation and propagation. Leaf and rhizome explants of Kaempferia were aseptically cultured on MS medium with various combinations of indole-3-acetic acid (IAA), benzyl amino purine (BAP), napthalene acetic acid (NAA), 2-4-dichlorophenoxy acetic acid (2,4-D) and kinetin at concentrations ranging from 0.5 to 2.5 mg/L. High-frequency organogenesis and multiple shoot regeneration was induced from rhizome explants on MS medium supplemented with 0.5 mg/L of IAA and 2.5 mg/L of BAP. Rooting was induced in MS medium with 0.5 mg/L of IAA and 2 mg/L of BAP.  相似文献   

6.
Pasak bumi (Eurycoma longifolia Jack.) has been known as a plants that can produce secondary metabolites for medicinal purposes such as: aphrosidiac, antimalaria, dysentri, antitumor, etc. Poor seed germination of pasak bumi will affect the avaibility of plant material for drug extraction. Over exploitation of this plant will also reduce plant population in its natural habitat. In vitro culture, i.e. through somatic embryogenesis, therefore, can be used as one of an alternative method for plant regeneration as well as for in vitro metabolite production. Based on this reason, the research has been done with an objective to analyze the presence of secondary metabolite in somatic embryo of pasak bumi. Seed-derived callus was used as an explant. This callus was maintained to proliferate in MS (Murashige&Skoog, 1962) medium supplemented with 2.25 mg/L 2,4-D and 2.0 mg/L kinetin. A half gram of callus from proliferation medium was transferred into the MS liquid medium containing 1.0 or 2.25 mg/L 2,4-D, and 2.0 mg/L BAP or 2.0 mg/L kinetin. Histochemical examination using Jeffrey's reagen and neutral red showed that alkaloid and terpenoid substances were presence in somatic embryo of pasakbumi. In accordance with histochemical test, GC-MS analyses showed that secondary metabolites was also synthesized by non embryogenic callus and the mixture ofembryogenic callus and somatic embryo, although the concentration in the mixture of embryogenic callus and somatic embryo was lower than those in non-embryogenic callus. Secondary metabolites, including 3-[(cyclohexyl-methyl-amino)-methyl]-3H-benzooxazole-2-one (0.06%) and 2-furancarboxaldehyde, 5-(hydroxymethyl) (43.024%) were found in embryogenic callus and somatic embryo. In addition, the mixture of embryogenic callus and somatic embryo also synthesized fatty acid and lipids (52.751%) which was higher than non-embryogenic callus (24.789%). Based on the result, the mixture of embryogenic callus and somatic embryo could produce secondary metabolites, such as alkaloid, terpenoid subtances, and phenol. The concentration of metabolites in the mixture of embryogenic callus and somatic embryo, however, was lower compare to non-embryogenic callus.  相似文献   

7.
Chlorophenoxycarboxylic acid herbicides were separated and determined by capillary electrophoresis. An analysis of a six-component mixture containing 2,4-dichlorophenoxybutyric (2,4-DB), 2,4-dichlorophenoxypropionic (2,4-DP), 2,4,5-trichlorophenoxyacetic (2,4,5-T), 2,4-dichlorophenoxyacetic (2,4-D), and phenoxyacetic (PA) acids and 2,4-dichlorophenol (2,4-DCP), the product of their degradation in aqueous media, took no longer than 15 min. Solid-phase extraction on Diapak C-16 cartridges was used for sample preparation. The detection limits for herbicides in water samples with account for preconcentration (K = 250) were found to be 0.0005 mg/L for 2,4-DB, 2,4-DP, 2,4,5-T, and 2,4-D and 0.001 mg/L for PA. It was shown that humic acids (< 50 mg/L) do not interfere with the determination of chlorophenoxycarboxylic acids.  相似文献   

8.
Alpinia galanga is a rhizomatous herb rich in essential oils and various other significant phytoconstituents. Rapid direct regeneration was obtained from the rhizome explants (15.66 ± 0.57 shoots) on MS media supplemented with zeatin at a concentration of 2 mg/l. The callus cultures of A. galanga were initiated from the rhizome explants on MS media supplemented with 2 mg/l each of BAP, 2,4-D, and NAA. The callus was analyzed for the presence of a vital phytoconstituent--acetoxychavicol acetate (ACA) associated with various biological properties. ACA was detected in the young friable callus as well as the stationary phase callus. Moreover, the induction of morphogenetic response in callus resulted in higher accumulation of ACA. The phytohormone withdrawal from the propagation media and the subsequent transfer of callus to BAP (2 mg/l) containing MS media has resulted in multiple shoot induction. The regenerated (indirect) plants have shown 1.6-fold higher ACA content (1.253%) when compared to the control plant (0.783%). Micropropagation of such conventionally propagated plants is very essential to meet the commercial demand as well as to ensure easy storage and transportation of disease free stocks.  相似文献   

9.
Plants endue a key role against illnesses caused by oxidative stress. These attributes are frequently associated with polyphenolic compounds. However, presence and concentration of secondary metabolites are affected by abiotic factors. The in vitro culture techniques can solve these drawbacks. Peppers can be a suitable alternative to obtain polyphenols. Aiming to optimise the callus culture stage from Capsicum baccatum to produce polyphenols, this work evaluated systemically the effects of the explant’s origin (root, hypocotyl and cotyledon), growth hormone type (2,4-dichlorophenoxyacetic acid (2,4-D), benzylaminopurine (BAP) and a combination of 2,4-D/BAP at five-to-one ratio) and concentration (0.023–10.000 mg L?1) on callus culture efficiency parameters using a multilevel factorial design. The root explant in combination with BAP at 1.138 mg L?1 ensured the optimal values of the assessed responses; ?callus mass (225.03 mg), antioxidant activity (35.95%), total phenols (11.48 mg of GAE/g DE) and flavonoids (15.92 mg of RU/g DE) production.  相似文献   

10.
In the study, anti-Candida activity and phenol contents of Lythrum salicaria L. calli and wild species have been evaluated. The seeds of L. salicaria (Lythraceae), collected from Lahidjan City in the north of Iran, were cultured in Murashige and Skoog medium (MSM) with a supplement, gibberellin, to germinate. Callus inductions were performed from segments of seedling on MSM containing different concentrations of plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The activity of calluses extracts, wild plant, gallic acid, and 3,3′,4′-tri-O-methylellagic acid-4-O-β-d-glucopyranoside (TMEG) as the main phenolic compounds against Candida albicans was assessed using cup plate diffusion method. The total phenols contents of calli and wild plant extracts were analyzed using Folin–Ciocalteu reagent. The callus formation in MSM supplemented with various concentrations of 2,4-D and BAP were 0–100 %. Anti-Candida activity of callus extract which obtained from MSM supplemented with 2,4-D and BAP (1 mg?dm?3) was similar to the wild plant extract. Minimum inhibitory concentration values of gallic acid and TMEG were obtained as 0.312 and 2.5 mg?cm?3, respectively. Gallic acid equivalent values in all treatments were from 0 to 288 μg GAE mg?1. Phenolic contents of plant aerial parts (331?±?3.7 μg GAE mg?1) and the callus, which developed in MSM including 1 mg?dm?3 of both 2,4-D and BAP, showed the same phenolic value and exhibited anti-Candida extract activity.  相似文献   

11.
Tissue cultures were established from cotyledon and cotyledonarynode segments ofArachis hypogaea L. on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins (IAA, NAA, IBA, and 2, 4-D) and cytokinins (KIN and BAP). For callus initiation, high concentration of auxins and low concentration of cytokinins were used, whereas high concentration of cytokinins and low concentration of auxins were used for shoot-bud differentiation. Callus induction and shoot-bud regeneration frequency, however, varied with genotype, expiant, and the different plant-growth regulators combination in the medium. The shoot-bud multiplication was also influenced by genotype, explant type, and growth regulators. The combination of BAP and NAA produced more shoots than other combinations. The maximum number of shoots was obtained from cotyledonary-node segments on a medium containing BAP (5.0 mg/L) and IBA (1.0 mg/L). Rooting of regenerated shoots was achieved on a medium augmented with NAA or IBA (2.0 mg/L) in combination with KIN (0.5 mg/L). Rooted plantlets were successfully established in the soil, where 95% of them survived. Tissue-culture studies of these expiants suggests the shoots to be ofde nova origin, which would make the system suitable for gene-transfer technology.  相似文献   

12.
A multianalyte immunosensor array can be implemented by immobilization of different haptens in distinct areas of a single cavity or flow cell. In this case a mixture of different antibodies for different analytes is used in an indirect ELISA-format. The selection of the right hapten structures is very important to build up an array successfully. A system of independent hapten/antibody combinations is needed, with one immobilized hapten (coating antigen) reacting only with one antibody. If more than one antibody binds to a coating antigen no ideal calibration curves are obtained. This phenomenon is known as shared-reactivity and can lead to double-sigmoidal curves. To use monoclonal antibodies to 2,4,6-trinitrotoluene (TNT) and 2,4-dichlorophenoxyacetic acid (2,4-D), two different haptens had to be found, one only reacting with the TNT-antibody, the other only binding to the 2,4-D-antibody. 2,4-Dichlorophenoxybutyric acid was used for the 2,4-D antibody and 2,4,6-trinitrophenyl-8-aminooctanoic acid for the TNT antibody. Although 4-nitrotoluene, 2,4-dinitrotoluene and 4-amino-2,6-dinitrotoluene showed only very low cross-reactivities to the 2,4-D antibody the corresponding haptens 4-nitrophenylacetic acid, 2,4-dinitrophenyl-6-aminohexanonic acid, and 4-amino-2,6-dinitrotoluyl-(N)-glutarate are useful coating antigens for this antibody. The structure of the coating antigens had no significant influence on the midpoints (IC50) of the test for 2,4-D and even haptens with very low cross-reactivities could be used. With all haptens a test midpoint of about 0.2 μg/L for 2,4-D was achieved. For the direct assay format with immobilized antibodies the same test midpoint of 0.2 μg/L for 2,4-D was obtained. As a conclusion, the selectivity of a monoclonal antibody should not be influenced by the used tracer or coating antigen as well. It could be shown that the affinity constants of an antibody to the analytes are the main sensitivity and selectivity determining parameters for competitive immunoassays. A two-dimensional microtiter plate array was used to determine the analytes 2,4-D and TNT in parallel with a mixture of antibodies. Received: 29 July 1998 / Revised: 21 October 1998 / Accepted: 10 November 1998  相似文献   

13.
Aloe vera L., a member of Liliaceae, is a medicinal plant and has a number of curative properties. We describe here the development of tissue culture method for high-frequency plantlet regeneration from inflorescence axis-derived callus cultures of sweet aloe genotype. Competent callus cultures were established on 0.8% agar-gelled Murashige and Skoog’s (MS) basal medium supplemented with 6.0 mg l−1 of 2,4-dichlorophenoxyacetic acid (2,4-D) and 100.0 mg l−1 of activated charcoal and additives (100 mg l−1 of ascorbic acid, 50.0 mg l−1 each of citric acid and polyvinylpyrrolidone, and 25.0 mg l−1 each of l-arginine and adenine sulfate). The callus cultures were cultured on MS medium containing 1.5 mg l−1 of 2,4-D, 0.25 mg l−1 of Kinetin (Kin), and additives with 4% carbohydrate source for multiplication and long-term maintenance of regenerative callus cultures. Callus cultures organized, differentiated, and produced globular embryogenic structures on MS medium with 1.0 mg l−1 of 2,4-D, 0.25 mg l−1 of Kin, and additives (50.0 mg l−1 of ascorbic acid and 25.0 mg l−1 each of citric acid, l-arginine, and adenine sulfate). These globular structures subsequently produced shoot buds and then complete plantlets on MS medium containing 1.0 mg l−1 of 6-benzylaminopurine and additives. A hundred percent regenerated plantlets were hardened in the greenhouse and stored under an agro-net house/nursery. The regeneration system defined could be a useful tool not only for mass-scale propagation of selected genotype of A. vera, but also for genetic improvement of plant species through genetic transformation.  相似文献   

14.
The present investigation reports the growth kinetics and diosgenin accumulation in callus cultures of Costus speciosus. Effect of explants, media and plant growth regulators was evaluated with respect to callus induction and growth. Out of the two explants viz pseudostem and seed, pseudostem showed maximum callus induction frequency of 90% on MS medium. The fresh weight of callus was maximum (9-folds) on 28th day on 1.0 mg/L picloram containing medium. The callus obtained was white compact hard (WCH). For growth kinetics study pseudostem derived callus was transferred on different media supplemented with 1.0 mg/L picloram. All phases of growth were seen in callus inoculated on all the three media except the absence of stationary phase on MS and SH media. MS medium proved to be the best for maximum biomass accumulation (9-fold) on 28th day of culture and callus in post-exponential phase showed maximum diosgenin accumulation (33 ppm).  相似文献   

15.
An efficient plant regeneration protocol was established for an endangered ethnomedicinal plant Desmodium gangeticum (Linn.) DC. Morphogenic calli were produced from 96 % of the cultures comprising the immature leaf explants on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (4.0 mg?l?1) in combination with 6-benzylaminopurine (BA; 0.8 mg?l?1). For callus regeneration, various concentrations of BA (1.0–5.0 mg?l?1) or thidiazuron (TDZ; 1.0–5.0 mg?l?1) alone or in combination with indole-3-acetic acid (IAA; 0.2–1.0 mg?l?1) were used. Highest response of shoot regeneration was observed on MS medium fortified with TDZ (4.0 mg?l?1) and IAA (0.5 mg?l?1) combination. Here, 100 % cultures responded with an average number of 22.3 shoots per gram calli. Inclusion of indole-3-butyric acid in half MS medium favored rooting of recovered shoots. Out of 45 rooted plants transferred to soil, 40 survived. Total DNA was extracted from the leaves of the acclimatized plants of D. gangeticum. Analysis of random amplified polymorphic DNA using 13 arbitrary decanucleotide primers showed the genetic homogeneity in all the ten plants regenerated from callus with parental plant, suggesting that shoot regeneration from callus could be used for the true-to-type multiplication of this plant.  相似文献   

16.
In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog’s (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2?±?0.58 buds in central vein explants. Addition of different growth regulators (cytokinins—6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins—indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4?±?0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.  相似文献   

17.
实验发现,2,4-二氯苯氧基乙酸(2,4-D)经紫外光转化后与KMnO4在H2SO4介质中反应可产生化学发光。采用液相色谱-质谱联用技术(LC-MS)对2,4-D光降解产物进行分析,推断光降解主要生成了多酚类降解产物,如2-氯对苯二酚(CHQ)和4-氯邻苯二酚等。化学发光光谱研究发现,2,4-D经紫外光转化后,与KMnO4反应的发光波长为690 nm,与2,4-D的典型降解产物CHQ的化学发光光谱一致。此发光现象是氧化还原过程中生成的Mn?吸收反应所释放出的化学能成为激发态,再返回基态时产生的特征辐射峰。该反应体系可用于2,4-D的检测,当2,4-D浓度在0.01~10 mg/L范围内与发光强度呈良好的线性关系;检出限为3.0μg/L。  相似文献   

18.
Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively.  相似文献   

19.
In this study, production and optimisation of rosmarinic acid, a phenolic acid and an economically important metabolite, was investigated in the callus cultures established from the mature seeds of Satureja hortensis L. (summer savory) plant. Gamborg's B5 basal medium, supplemented with indol butyric acid (IBA) (1.00 mg L(-1)), N6-benzyl aminopurine (6-BA) (1.00 mg L(-1)) and sucrose (2.5%, w/v), was employed for the establishment and maintenance of the callus cultures. Applications were individually prepared by preparing the media containing different IBA/6-BA combinations and sucrose concentrations. All of the applications were carried out in the continuous dark. In the applications, where the effects of IBA/6-BA combinations on the growth and rosmarinic acid accumulation were assayed (1-15 applications), the highest biomass yield was obtained from the medium supplemented with 1.00 mg L(-1) IBA and 5.00 mg L(-1) 6-BA. In the case of the rosmarinic acid accumulation, an opposite relationship was determined between the growth and rosmarinic acid production. While the highest biomass yield was obtained from the medium containing 1.00 mg L(-1) IBA and 5.00 mg L(-1) 6-BA, the highest rosmarinic acid accumulation was obtained from the medium supported with 1.00 mg L(-1) IBA and 1.00 mg L(-1) 6-BA. In the applications where the effects of sucrose concentrations on the growth and rosmarinic acid accumulation were examined, the highest biomass yield was obtained from the medium which is supplemented with 5.0% (w/v) sucrose. In this category, the highest rosmarinic acid accumulation was obtained from the medium which is supported with 3.0% (w/v) sucrose. According to the experiments carried out with the wild S. hortensis, it is found to have 25.02+/-1.21 mg g(-1) rosmarinic acid. No differentiation was observed in any callus during the course of this study.  相似文献   

20.
An improved version of the disposable multichannel immunochemical biosensor for the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) based on a screen-printed amperometric transducer and monoclonal antibodies (MAb) against 2,4-D is reported. Entrapment within a thin Nafion film was used for the direct immobilization of MAb at the electrode surface. The amount of the tracer (2,4-D conjugated to acetylcholinesterase) bound in a competitive immunochemical reaction was determined amperometrically using acetylthiocholine iodide as substrate. The measuring procedure (times of incubation with tracer and substrate, pH, tracer concentration) was optimized. The sensor was able to detect less than 0.01 μg/L of free 2,4-D in water. One analysis (8 samples) was completed in 30 min (20 min for immunochemical reaction, 5 min incubation with substrate, 5 min measurement). The performance of the immunosensor (two configurations) was evaluated on real samples (tap water) with added 2,4-D. The determined amounts (mean values 0.097 to 0.105 and 0.89 to 1.13) corresponded well with the added contents of 2,4-D (0.100 and 1.00 μg/L, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号