首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Fatty acid amides are a newly emerging class of compounds with biological activity. The amides are formed enzymatically in vivo. Analysis of fatty acid amides has been accomplished by gas chromatography coupled with mass spectrometry. Fatty acid amides required derivatization prior to analysis at high temperatures due to thermal instability. Trimethylsilylation of fatty acid amides has been accomplished under optimum reaction conditions. The limit of detection for the silylated amides is approximately 1 pmol, with the lowest detected level being 700 fmol for the lauramide derivative. Quantitation of fatty acid amide derivatives can be accomplished by monitoring m/z 59 or m/z M-71, the only two major fragments formed in the ion trap mass spectrometer with electron impact ionization. The smaller fragment is the result of a newly reported, McLafferty-type rearrangement; M-71 resulted from loss of an n-pentyl fragment. Either peak gave four-five orders of magnitude linear dynamic range. Numerous trimethylsilylamides from C7 to C20 were separated under standard conditions. Elution was linear with the number of carbons and was systematically affected by the number and position of the double bonds.  相似文献   

2.
When zotepine, an antipsychotic drug, was electrochemically oxidized using electrospray ionization mass spectrometry (ESI-MS) coupled with a microflow electrolytic cell, [M + 16 + H]+ (m/z 348), [M-H]+ (m/z 330) and [M-14 + H]+ (m/z 318) were observed as electrochemical oxidation product ions (M represents the zotepine molecule). Although a major fragment ion that was derived from the dimethyl aminoethyl moiety was observed only at m/z 72 in the collision-induced dissociation (CID) spectrum of zotepine, new fragments such as m/z 315 and 286 ions could be generated in the CID spectrum by combining electrochemical oxidation and CID. Since these fragments were relatively specific with high ion strength, it was thought that they would be useful for developing a sensitive LC-MS/MS assay. The S-oxide and N-demethylated products were detected by electrolysis assuring that a portion of P450 metabolites of zotepine could be mimicked by the electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) system.  相似文献   

3.
A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.  相似文献   

4.
In this study, we benefit from the combination of liquid chromatography (LC)/time-of-flight (TOF) MS accurate mass measurements to generate elemental compositions of ions and LC/ion trap multiple MS (MSn) providing complementary structural information, which is useful for the elucidation of unknown organic compounds at trace levels in complex food extracts. We have applied this approach to investigate different citrus fruits extracts, and we have identified two post-harvest fungicides (imazalil and prochloraz), the main degradation product of imazalil ([M + H]+, m/z 257) and a non-previously reported prochloraz degradation product ([M + H]+, m/z 282). The database-mediated identification of the parent compounds was based on the generated elemental composition obtained from accurate mass measurements and additional qualitative information from the high resolution chlorine isotopic clusters of both the protonated molecules (imazalil, [M + H]+ 297.0556, <0.1 ppm error, 2-Cl; prochloraz, [M + H]+ 376.0381, 1.9 ppm error, 3-Cl) and their characteristic fragments ions (imazalil: m/z 255 and 159; prochloraz: m/z 308 and 266). The correlation between the structural information provided by ion trap MS/MS fragmentation pathways of the parent species and the TOF accurate mass elemental composition data of the degradation products were the key to elucidate the structures of the degradation products of both post-harvest fungicides. Finally, where standards were not available (prochloraz), further confirmation was obtained by synthesizing the proposed degradation product by acid hydrolysis of the parent standard and confirmation by LC/TOF-MS.  相似文献   

5.
Ceftiofur is an important veterinary beta-lactam antibiotic whose bioactive metabolite, desfuroylceftiofur, has a free thiol group. Desfuroylceftiofur (DFC) was reacted with two peptides, [Arg8]-vasopressin and reduced glutathione, both of which have cysteine residues to form disulfide-linked peptide/antibiotic complexes. The products of the reaction, [vasopressin + (DFC-H) + (DFC-H) + H]+, [(vasopressin+H) + (DFC-H) + H]+ and [(glutathione-H) + (DFC-H) + H]+, were analyzed using collision-activated dissociation (CAD) with a quadrupole ion trap tandem mass spectrometer. MS/MS of [vasopressin + (DFC-H) + (DFC-H) + H]+ resulted in facile dissociative loss of one and two covalently bound DFC moieties. Loss of one DFC resulted from either homolytic or heterolytic dissociation of the peptide/antibiotic disulfide bond with equal or unequal partitioning of the two sulfur atoms between the fragment ion and neutral loss. Hydrogen migration preceded heterolytic dissociation. Loss of two DFC moieties from [vasopressin + (DFC-H) + (DFC-H) + H]+ appears to result from collision-activated intramolecular disulfide bond rearrangement (IDBR) to produce cyclic [vasopressin + H]+ (at m/z 1084) as well as other cyclic fragment ions at m/z 1084 +/- 32 and +64. The cyclic structure of these ions could only be inferred as MS/MS may result in rearrangement to non-cyclic structures prior to dissociative loss. IDBR was also detected from MS(3) experiments of [vasopressin + (DFC-H) + (DFC-H) + H]+ fragment ions. MS/MS of [(glutathione-H) + (DFC-H) + H]+ resulted in cleavage of the peptide backbone with retention of the DFC moiety as well as heterolytic cleavage of the peptide/antibiotic disulfide bond to produce the fragment ion: [(DFC-2H) + H]+. These results demonstrate the facile dissociative loss by CAD of DFC moieties covalently attached to peptides through disulfide bonds. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

6.
A series of hexa- to decapeptides (molecular mass range 800-1200) were labeled with naphthalene-2,3-dicarboxaldehyde, which preferentially reacts with the primary amino groups of a peptide. A highly stable peptide conjugate is formed, which allows selective analysis by fluorescence at excitation and emission wavelengths of 420 and 490 nm, respectively. After removal of unreacted compounds, the peptide conjugates were characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight and nano-electrospray ionization (ESI) ion trap mass spectrometry. They readily form both [M + H]+ ions by MALDI and both [M + H]+ and [M + 2H]2+ ions by ESI. Furthermore, the fragmentation behavior of the N-terminally tagged peptides, exhibiting an uncharged N-terminus, was investigated applying post-source decay fragmentation with a curved field reflector and collision-induced dissociation with a quadrupole ion trap. Fragmentation is dominated in both cases by series of a-, b- and y-type ions and [M + H - HCN]+ ions. Peptide bonds adjacent to the fluorescence label were less susceptible to cleavage than the bonds of the non-derivatized peptide ions. In general, the resulting fragment ion patterns were less complex than those of the underivatized peptides.  相似文献   

7.
We have acquired multi-stage mass spectra (MSn) of four branched N-glycans derived from human serum IgG by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF-MS) in order to demonstrate high sensitivity structural analysis. [M+H]+ and [M+Na]+ ions were detected in the positive mode. The detection limit of [M+Na]+ in MS/MS and MS3 measurements for structural analysis was found to be 100 fmol, better than that for [M+H]+. The [M+H]+ ions subsequently fragmented to produce predominantly a Y series of fragments, whereas [M+Na]+ ions fragmented to give a complex mixture of B and Y ions together with some cross-ring fragments. Three features of MALDI-QIT-CID fragmentation of [M+Na]+ were cleared by the analysis of MS/MS, MS3 and MS4 spectra: (1) the fragment ions resulting from the breaking of a bond are more easily generated than that from multi-bond dissociation; (2) the trimannosyl-chitobiose core is either hardly dissociated, easily ionized or it is easy to break a bond between N-acetylglucosamine and mannose; (3) the fragmentation by loss of only galactose from the non-reducing terminus is not observed. We could determine the existence ratios of candidates for each fragment ion in the MS/MS spectrum of [M+Na]+ by considering these features. These results indicate that MSn analysis of [M+Na]+ ions is more useful for the analysis of complicated oligosaccharide structures than MS/MS analysis of [M+H]+, owing to the higher sensitivity and enhanced structural information. Furthermore, two kinds of glycans, with differing branch structures, could be distinguished by comparing the relative fragment ion abundances in the MS3 spectrum of [M+Na]+. These analyses demonstrate that the MSn technology incorporated in MALDI-QIT-TOF-MS can facilitate the elucidation of structure of complex branched oligosaccharides.  相似文献   

8.
Derivatization of a variety of peptides by a method known to enhance anhydride formation is demonstrated by mass spectrometry to yield ions that have elemental composition and fragmentation properties identical to [b(n-1) + OH + H]+ ions formed by gas-phase rearrangement and fragmentation. The [b(n-1) + OH + H]+ ions formed by gas-phase rearrangement and fragmentation and the solution-phase [b(n-1) + OH + H]+ ion structural analogs formed by derivatization chemistry show two different forms of dissociation using multiple-collision CAD in a quadrupole ion trap and unimolecular decomposition in a TOF-TOF; one group yields identical product ions as a truncated form of the peptide with a free C-terminal carboxylic acid and fragments at the same activation energy; the other group fragments differently from the truncated peptide, being more resistant to fragmentation than the truncated peptide and yielding primarily the [b(n-2) + OH + H]+ product ion. Nonergodic electron capture dissociation MS/MS suggests that any structural differences between the specific-fragmenting [b(n-1) + OH + H]+ ions and the truncated peptide is at the C-terminus of the peptide. The specific-fragmentation can be readily observed by MS(n) experiments to occur in an iterative fashion, suggesting that the C-terminal structure of the original [b(n-1) + OH + H]+ ion is maintained after subsequent rearrangement and fragmentation events in peptides which fragment specifically. A mechanism for the formation of specific-fragmenting and nonspecific-fragmenting [b(n-1) + OH + H]+ ions is proposed.  相似文献   

9.
Positive ion mass spectral fragmentation of new N-carbamoyl/N-thiocarbamoyl derivatives of narcotine and compounds closely related to it are reported and discussed. The techniques used include electron impact (EI), fast-atom bombardment (FAB), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Prominent peaks in the mass spectra of these compounds appear to involve C-C bond cleavage beta to the amine nitrogen with loss of the 4,5-dimethoxy(1H)isobenzofuranone moiety from their molecular ions, along with another prominent peak at m/z 382. No molecular ion peaks of these compounds were recorded in EI, whereas intense [M + H]+ ion peaks were observed in FAB and ESI spectra. MALDI also yielded [M + H]+ ion peaks in good agreement with FAB and ESI studies.  相似文献   

10.
采用FAB-MS测定α-人心房肽片段的氨基酸序列。通过分析碎片离子的m/z值,可以明确表达各肽段的氨基酸序列。在分子离子区都是[M+H]~+峰,所有片段羰基的α断裂都有肽键断裂和碳碳键断裂两种方式。  相似文献   

11.
The cysteinyl leukotrienes, LTC4, LTD4 and LTE4, and the recently described cysteinyl eicosanoid, 5-oxo-7-glutathionyl-8,11,14-eicosatrienoic acid (FOG7) have been analyzed by tandem mass spectrometry. Both [M-H]- and [M+H]+ ions were produced by electrospray ionization and collision-induced dissociation of these molecular ion species were studied using both an ion trap and a triple quadrupole instrument. Product ion spectra obtained were characteristic of the structure of the cysteinyl leukotrienes and mechanisms of ion formation were investigated by using deuterium-labeled analogs. The product ion spectrum obtained following collision-induced dissociation of the [M-H]- anion from FOG7 was devoid of significant structural information and further studies of collision activation of the [M+H]+ spectrum were therefore examined. Positive ion MS3 spectra obtained in the ion trap from the gamma-glutamate cleavage products of FOG7 and its derivative (d7-FOG7) afforded an abundant ion not observed in spectra generated from the cysteinyl leukotrienes. Formation of this fragment ion likely occurred via a McLafferty-type rearrangement to afford cleavage of the C6-C7 bond adjacent to the sulfur atom and was valuable for the identification of the structure of FOG7 and defining the biosynthetic pathway as a 1,4-Michael addition of glutathione to 5-oxo-eicosatetraenoic acid (5-oxo-ETE).  相似文献   

12.
The antimicrobial moenomycin, commonly used as a growth promoter in livestock, was isolated from medicated chicken feed. The purified extract was subjected to reversed-phase liquid chromatographic separation followed by structural characterization using ion-trap mass spectrometry (ITMS), which allowed identification of five moenomycins (A, A12, C1, C3, and C4) as the major components. The fragmentation patterns of the protonated and deprotonated moenomycin molecules, as well as of a series of sodium adducts, were investigated using ITMS after electrospray ionization. While the protonated molecules [M+H]+ proved highly unstable and underwent extensive in-source fragmentation, isolation and activation of the [M--H]- ions (m/z 1580 for moenomycin-A) yielded simple mass spectra with a dominant base peak corresponding to the loss of the carboxy-glycol and the C25-hydrocarbon chain (m/z 1152 for moenomycin-A). Further study of this fragment ion in an MS3 experiment gave rise to a peculiar product ion (m/z 902 for moenomycin-A) that was attributed to the expulsion of a carbohydrate moiety representing a central building block of the linear molecule. In positive ion mode the generation of the mono-sodiated adduct ions, [M+Na]+, was promoted by amending the mobile phase with 100 microM sodium acetate, but this also resulted in higher adducts of the type [M+2Na--H]+ and [M+3Na--2H]+ arising from the formation of the sodium salts of the phosphate acid diester and subsequently of the carboxylic acid. Substantial differences among the fragment-rich product ion profiles of the three species were observed, and could in part be traced back to the mode of complexation of the additional sodium cation(s).  相似文献   

13.
Complications with the gas chromatographic analysis of steroids prompted the use of alternative techniques for their identification. High-performance liquid chromatography/mass spectrometry with atmospheric pressure ionization allowed the collection of data for structural identification of these compounds. The objective of this study was to investigate the up-front collision-induced dissociation (UFCID) electrospray ionization (ESI) mass spectra of testosterone and monohydroxylated testosterones. The positive ion UFCID ESI mass spectrum of testosterone showed three significant ions at m/z 97, 109 and 123. The relative abundance of these ions in the UFCID ESI mass spectra of monohydroxylated testosterones varied with the position of the hydroxy group. Statistical data allowed the prediction of hydroxy group position on testosterone by evaluation of the relative abundance of the m/z 97, 109, 121 and 123 ions. Data from the ESI mass spectral analysis of testosterone in a deuterated solvent and from the analysis of cholestenone and 4-androstene-3 beta, 17 beta-diol indicated that the initial ionization of testosterone occurred at the 3-one position. CID parent ion monitoring analyses of the m/z 97, 109 and 123 ions indicated that each resulted from different fragmentation mechanisms and originated directly from the [M + H]+ parent ion. The elemental composition of these fragment ions is proposed based on evidence gathered from the CID analysis of the pseudo-molecular ions of [1,2-2H2]-, [2,2,4,6,6-2H5]-, [6,7-2H2]-, [7-2H]-, [19,19,19-2H3]- and [3,4-13C2]testosterone. The structure and a possible mechanism of formation of the m/z 109 and 123 ions is presented. The results of this study advance the understanding of the mechanisms of collision-induced fragmentation of ions.  相似文献   

14.
On-line high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (HPLC/APCI-MS) has been applied to the identification of a number of tetrapyrrolic pigments as well as several magnesium-free analogs. Mass spectra, acquired both in positive (+) and negative (-) ionization mode, allow not only the determination of the structural features of the pigments, but also a very easy differentiation of the Mg-chelated pigments from the free bases. In the positive ionization mode, all pigments show mainly a [M + H]+ ion and a [M + H - C20H38]+ fragment ion corresponding to the loss of the phytyl chain via a hydrogen rearrangement. In the negative ionization mode, on the other hand, although all pigments give an abundant molecular anion [M]-*, only the Mg-chelated chlorin spectra show a prominent fragment [M - C20H39]- produced by a formal loss of the phytyl radical.  相似文献   

15.
During our characterization of plicatamide 1, a modified octapeptide: Phe-Phe-His-Leu-His-Phe-His-dc deltaDOPA (where dc deltaDOPA = decarboxy-(E)-alpha,beta-dehydro-3,4-dihydroxyphenylalanine) from the blood cells of the ascidian Styela plicata, we noted a series of fragment ions from the [M + H]+ ion which could not be assigned. There was no evidence in the 1H NMR spectrum to support an alternative molecular structure and the series of fragment ions were not present in the tandem mass spectrometry analysis of the [M + Na]+ ion. In addition, there was no evidence that the sample was a mixture of isobaric compounds. We propose that an unusual C-terminal to N-terminal rearrangement is responsible for the series of fragment ions from the [M + H]+ ion. This rearrangement was not observed in peptide analogs of plicatamide which did not contain the dc deltaDOPA at the C-terminus suggesting that this moiety is critical for the rearrangement. The proposed reaction is analogous to that recently reported by Vachet et al. involving a fragment ion formed from leucine enkephalin.  相似文献   

16.
Electrospray ionization mass spectra of some glycosyl dithioacetals recorded in the presence of transition-metal chlorides, XCl2 (where X = Co, Mn and Zn), give abundant adduct ions such as [M+XCl]+ and [2M-H+X]+ and minor ions such as [M-H+X]+ and [2M+XCl]+. The tandem mass spectra of these adducts show characteristic elimination of neutral molecules such as H2O, HCl, EtSH, CH2O, C2H4O2/C2H4O. [M+XCl]+ ions fragment readily and the fragmentation appears to be stereochemically controlled as the relative abundances of the fragments are different for three stereoisomers. The added metal is lost as neutral molecules in the form of XCl(OH) and XCl(SEt). This is a predominant pathway in the ZnCl+ adducts. [2M+XCl]+ ions fragment preferentially by elimination of HCl, indicating strong metal interactions in the resulting dimeric [2M-H+X]+ ion. As there are several electron-rich centers in the molecule, the dimeric complex [2M-H+X]+ can have several structures and the observed fragmentations may reflect the sum of those of all these structures. The dimeric complexes fragment by elimination of neutral molecules leaving the dimeric interactions intact. The extent of fragmentation varies for the stereoisomers, leading to stereochemical differentiation.  相似文献   

17.
This study outlines some observations of the pressure effect for gas phase ion-molecule reactions of anthraquinone derivatives with dimethyl ether in an external source ion trap mass spectrometer. At the reagent pressure of 7.998 x 10(-2) Pa, formation of the protonated ions, [M + 13]+, [M + 15]+, and [M + 45]+ ions, of anthraquinones can be observed. However, at the pressure of 1.066 x 10(-2) Pa, formation of molecular ions and many fragment ions of the M+. or [M + H]+ ions have been observed. Since the pressure effect is notable within a small range of pressures for many compounds, it is important to draw attention to the use of the ion trap with an external source where other factors such as ion source residence time may play a role. This can also provide some information for better and more careful controls of the reagent pressure in order to obtain fair CI spectra in an external source ion trap mass spectrometer.  相似文献   

18.
The explosive triacetone triperoxide (TATP) has been analyzed by gas chromatography/mass spectrometry (GC/MS) and sub-nanogram detection limits are reported by ammonia positive ion chemical ionization (PICI), electron ionization (EI) and methane negative ion chemical ionization (NICI). Analysis by methane PICI and ammonia NICI gave detection limits in the low nanogram range. Analyses were carried out on (linear) quadrupole and ion trap instruments. Analysis of TATP by PICI using ammonia reagent gas is the preferred analytical method, producing low limits of detection as well as an abundant (greater than 60% of base peak) diagnostic adduct ion at m/z 240 corresponding to [TATP + NH4]+. Isolation of the [TATP + NH4]+ ion with subsequent collision-induced dissociation (CID) produces extremely low abundance product ions at m/z values greater than 60, and the m/z 223 ion corresponding to [TATP + H]+ was not observed. Density functional theory (DFT) calculations at the B88LYP/DVZP level indicate that dissociation of the complex to form NH4+ and TATP occurs at energies lower than peroxide bond dissociation, while protonation of TATP leads to cleavage of the ring structure. These results provide a method for pico-gram detection levels of TATP using commercial instrumentation commonly available in forensic laboratories. As a point of comparison, a detection limit of 15 ng was obtained by flame ionization detection.  相似文献   

19.
Electrospray ionization tandem mass spectral (ESI-MSn) analysis of thiodiglycol, bis(2-hydroxyethylthio)alkanes (BHETAs) and their mono-, di-, tri-, and tetraoxygenated compounds was carried out to obtain their characteristic spectra for ESI-MS analysis. These compounds are important markers of chemical warfare agents, namely sulfur mustards. ESI-MSn (n > or = 3) analysis of a compound by collisionally induced dissociation in an ion trap gives rise to mass spectra that are somewhat similar to electron ionization mass spectra. These ESI-MSn spectra can be used for compound identification. Under ESI-MS and ESI-MS/MS the compounds mostly produced [M+NH4]+, [M+H]+ and [M+H--H2O]+ ions. Fragmentations of these even-electron precursors in the ion trap gave rise to characteristic product ions via neutral loss of O2, H2O, C2H4, HCHO, C2H4O, C2H4S, HSC2H4OH and C2H4SO. Fragmentation routes of these compounds are proposed that rationalize the formation of product ions in ESI-MSn analysis.  相似文献   

20.
Ionization efficiencies and fragmentation patterns of cyanoacrylate ultraviolet (UV) absorbers, Uvinul 3035 and Uvinul 3039, were studied using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS). Solvent effect on the ionization efficiencies was investigated using methanol, ethanol, acetone, and chloroform. The fragmentation patterns were also investigated by varying the fragmentor voltage. Solvated ions, the [M+H + solvent](+) of methanol, ethanol, and acetone were detected, but the [M+H + chloroform](+) ion was not observed. For Uvinul 3039 in chloroform, the [M+CHCl(2)](+) ion was detected instead of the solvated ion. Relative abundance of the solvated ion was decreased by increasing the fragmentor voltage. Fragment ions of m/z 250, 232, and 204 were detected and their abundance increased with an increase in the fragmentor voltage. The m/z 250 ion can be accounted for by a McLafferty rearrangement. The fragment ions of m/z 232 and 204 were formed not only by subsequent fragmentations of the m/z 250 ion, but also by ion-molecule reactions of solvent ion and neutral analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号