首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Letter, the boundary-layer equation of flow over a nonlinearly stretching sheet in the presence of a chemical reaction and a magnetic field is investigated by employing the Adomian decomposition method (ADM). The series solution of the governing nonlinear problem is developed. The present solution is shown to agree very well with the existing solution.  相似文献   

2.
A rigorous nonlinear stability result is derived by introducing a suitable generalized energy functional for a magnetized ferrofluid layer heated and soluted from below with magnetic field-dependent (MFD) viscosity, for stress-free boundaries. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body and inertia forces. For ferrofluids, we find that there is possibility of existence of subcritical instabilities, however, it is noted that in case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effects of magnetic parameter, M3, solute gradient, S1 and MFD viscosity parameter, δ, on the subcritical instability region have also been analyzed.  相似文献   

3.
While a suitable magnetic field is applied to a ferrofluids film, magnetic nanoparticles in the film would form chain-like structure. Because of the action of magnetic convergent force (MCF) and magnetic divergent force (MDF), the chains will move coordinately towards to the axis of the field, then do apart from the center. From geometric shadowing effect, variation in the intensity of light transmitted through ferrofluids film is in relation to the coordinate motion of the chains. And a radiate synchromotion of the chain groups is constructed equivalently for describing the relation between transmitted light's intensity varying and chains moving. From the motion equation of one chain group, the relation is illustrated qualitatively by computer simulation. The experimental results show that the field-induced variation of light transmitted through ferrofluids film is a nonlinear relaxation process with intrinsic noise, and are in agreement with the behavior simulated by using the model of coordinated chains motion (MCCM).  相似文献   

4.
Citric-acid-coated magnetite nanoparticles for biological applications   总被引:1,自引:0,他引:1  
Water-based magnetic fluids, generally intended for biomedical applications, often have various coating molecules that make them stable and compatible with biological liquids. Magnetic fluids containing iron oxide particles have been prepared by a co-precipitation method, using citric acid as stabilizer. The magnetic particles of the magnetic fluids were obtained by chemical precipitation from ferric ( FeCl3) and ferrous salts ( FeSO4 or FeCl2) in alkali medium (ammonia hydroxide). Citric acid was used to stabilize the magnetic-particle suspension. Physical tests were performed in order to determine various microstructural and rheological features. Transmission electron microscopy was the main investigation method for assessing the magnetic-particle size. The dimensional distribution of the magnetic-particle physical diameter was analyzed using the box-plot statistical method while infrared absorption spectra were used to study the colloidal particle structure. The magnetic-fluid density (picnometric method), viscosity (capillary method) and surface tension (stalagmometric method) were measured using standard methods.  相似文献   

5.
We have investigated the forced diffusion of magnetic nanoparticles suspended in a carrier liquid under the influence of a magnetic field gradient. A cylindrical layer of the suspension was exposed to an azimuthal magnetic field with radial gradient. The radial distribution of the concentration of magnetic particles was determined for different times. The obtained experimental data are compared with a numerical solution of the diffusion equation and good agreement has been observed.  相似文献   

6.
The grafting number of surfactant coating on magnetite nanoparticles in a magnetic colloid (magnetic fluid), defined as the number of surfactant molecules adsorbed per surface area of nanoparticles, was successfully obtained from the atomic absorption spectroscopy and transmission electron microscopy. We found that the increases of grafting number with the molar concentration of surfactant and the adsorption temperature can be quantitatively measured, making it possible to produce well controlled, stable magnetic colloids that are precursors for many magnetic nanostructures.  相似文献   

7.
This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation at the interface between immiscible (different types of oils and aqueous solutions) and miscible (different types of oil and solvent) fluids. An extensive set of Hele-Shaw type experiments were performed for several viscosity ratios, and interfacial tension. Fractal analysis techniques were applied to quantify the degree of fingering and branching. This provided a rough assessment of the degree of perturbation generated at the interface when the capillary forces along with the viscous forces are effective. Miscible Hele-Shaw experiments were also presented to isolate the effect of viscous forces. We found that ultrasound acts to stabilize the interfacial front, and that such effect is most pronounced at low viscosity ratios. An erratum to this article is available at .  相似文献   

8.
We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.  相似文献   

9.
Isothermal convection in ferrofluids has been induced by a gradient in particle concentration antiparallel to a magnetic field gradient. The deviation of local particle concentration from its equilibrium value produced by the convective motion of the whole fluid gives rise to a corresponding spatial variation of magnetization. This variation has been observed by magnetic neutron scattering in good agreement with expectations based on flow measurements with an anemometric method.  相似文献   

10.
Nonstationary mass transfer under nanoparticle magnetophoresis in diluted ferrocolloids is experimentally investigated. Measurements performed by using the real time holography technique indicate a difference between the concentration boundary layer parameters found in the experiment and those calculated by using the approximation of nonstationary magnetodiffusion of colloidal particles. We suppose that the final stationary concentration distribution in the boundary layer is caused by a magnetic convection. Approximative calculations of concentration magnetic convection give the mass transfer relaxation time close to the exprimentally determined one.Work is supported by the European Community, Grant ERB 3510PL92-5206  相似文献   

11.
Both ferrofluidics and genetic algorithms are relatively new fields. Due to complex physical interactions, ferrofluidic topographies and assemblies have only been solved using finite time step, Lattice Boltzmann, and finite-element methods in very simple magnetic field configurations. In this paper, we show that it is possible (and highly advantageous) to employ genetic algorithms to solve for the fluid topographies, which can be extended to include more complex magnetic fields.  相似文献   

12.
Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.  相似文献   

13.
We consider a reaction-diffusion system in crossed electric and magnetic fields lying on the reaction plane. It is shown that a charge separation along the direction normal to the reaction plane resulting in a diffusional flux may cause a differential flow induced chemical instability and stationary pattern formation on a homogeneous steady state. This pattern is generically different from a Turing pattern modified by the crossed fields. The special role of magnetic field is emphasized. Our theoretical analysis is corroborated by numerical simulation on a reaction-diffusion system in three dimensions.  相似文献   

14.
A wave equation for a time-dependent perturbation about the steady shallow-water solution emulates the metric an acoustic white hole, even upon the incorporation of nonlinearity in the lowest order. A standing wave in the sub-critical region of the flow is stabilised by viscosity, and the resulting time scale for the amplitude decay helps in providing a scaling argument for the formation of the hydraulic jump. A standing wave in the super-critical region, on the other hand, displays an unstable character, which, although somewhat mitigated by viscosity, needs nonlinear effects to be saturated. A travelling wave moving upstream from the sub-critical region, destabilises the flow in the vicinity of the jump, for which experimental support has been given.  相似文献   

15.
A dynamic probing of magnetic liquids is performed experimentally, using a static magnetic field modulated by another smaller field, normal and alternating. The optical magneto-birefringence under these crossed magnetic fields is recorded as a function of the frequency for different field intensities and different sizes of the magnetic nanoparticles. A general reduced behavior is found for the in-phase and the out-of-phase optical response which is well-described by a simple mechanical model. Depending on the value H ani of the anisotropy field of the nanoparticles, we can distinguish two different high magnetic field regimes: - a rigid dipole regime (large anisotropy energy with respect to k B T) for cobalt ferrite nanoparticles with a relaxation time inversely proportional to the field intensity H C(H C < H ani), - a soft dipole regime (anisotropy energy of the order of k B T) for maghemite nanoparticles with a relaxation time independent of the field intensity H C(H C > H ani). Received 5 June 2000 and Received in final form 8 January 2001  相似文献   

16.
We consider two situations where hydrodynamic interactions are said to be “screened”: hydrodynamics in a gel or in a porous medium, and electrophoresis in an electrolyte. We focus on the corresponding Green functions, and show that the flow fields are similar in the two cases. Contrarily to statements often made, the fluid velocity decays algebraically with distance (), i.e. not exponentially. We point out that the pressure fields are different in the two cases. Received 23 March 2000  相似文献   

17.
We derive the dispersion relation of surface waves for magnetic gel membranes or thin films at the interface between two fluids in the presence of an external magnetic field normal to the free surface. Above a critical field strength surface waves become linearly unstable with respect to a stationary pattern of surface protuberances. This linear stability criterion generalizes that of the Rosensweig instability for ferrofluid and ferrogel free surfaces to take into account bending elasticity and intrinsic elastic and magnetic surface properties of the film or membrane, additionally. The latter is of interest for uniaxial ferrogel film or membranes, which show a locked-in permanent magnetization.  相似文献   

18.
It is shown here that concurrence between advection and diffusion in a drying sessile drop of a biological fluid can produce spatial redistribution of albumen and salt. The result gives an explanation for the patterns observed in the dried drops of the biological fluids.  相似文献   

19.
A new power generation system using electro-conductive polymer and its mixture with magnetic fluid is introduced. The system using non-poison electro-conductive polymer and its mixture with magnetic fluid and operating at room temperature is proposed in the present paper. The system could be used as a micro-distributed energy supply system for domestic use in the future. An experimental set-up is designed and established to investigate the performance of the power generation with an aid of a theoretical analysis of the power generation. It is found that the theoretical results are in good agreement with the measured data. Based on the obtained results, the electric output increases with Reynolds number, size of the test channel, magnetic strength and electric conductivity. It is understood that in order to obtain a practical power generation, priority should be put on increasing fluid flow velocity and magnetic field strength.  相似文献   

20.
Magnetohydrodynamics studies in laboratory experiments have long been restricted to low magnetic Reynolds number flows, mainly as a result of the very high magnetic diffusivity λ = 1/μσ of common conducting fluids (μ is the fluid's magnetic permeability and σ its electrical conductivity). The best conductivities are found in liquid metals which have a unit magnetic permeability, relative to vacuum. We show experimentally that a suspension of solid particles with a high magnetic permeability in a liquid metal yields an effective medium that has a high electrical conductivity and an enhanced magnetic permeability. The dispersion of the beads results from the turbulent fluid motion. The range of accessible magnetic Reynolds number can be increased by a factor of as much as 4 in our experimental setup. Received 6 March 2000 and Received in final form 13 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号