首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence spectrum of 7-hydroxycoumarine in ethanol excited by a pulsed tunable dye laser reveals different features when excitation proceeds via one-photon and two-photon absorption. In the former case the spectrum shows two peaks delayed in time by approximately 2 ns and characterized by different lifetimes. The relative intensity of these peaks is unaffected by significant changes in the dye concentration and therefore the formation of an “exciplex” species seems to be here confirmed. In the spectrum obtained by two-photon excitation the second peak at longer wavelength is absent. Results are presented for both room and liquid nitrogen temperatures as well as for other solvents such as glycerin and EPA. These results are considered to be important for the evaluation of absolute two-photon cross sections where the quantum efficiencies of one- and two-photon processes are assumed to be the same.  相似文献   

2.
At room temperature, the UV fluorescence of trypsin, thyroglobulin, hemoglobin and albumin are observed; these molecules undergo two-photon absorption when they are excited with the radiation of a frequency-duplicated Q-switched Nd:YAG laser. It is shown that the fluorescence of these proteins comes from the tryptophan residues and that it has a red shift of about 20 nm relative to the one-photon fluorescence. We suggest that the weak emission from tyrosine arises from the forbidden two-photon transition. The influence of concentration on the fluorescence of hemoglobin and tryptophan is discussed. The two-photon absorption cross-sections are estimated.  相似文献   

3.
In this paper, we define the two-photon absorption strength, a new characterization tool, similar to the oscillator strength, but for two-photon absorption. It allows the quantification of the two-photon absorption properties of molecular systems which are one-photon transparent. Its definition is such that the corresponding numerical values are around 100 for small molecules. We also show that this new theoretical tool allows the direct comparison of experimental and theoretical data without requiring the introduction of any arbitrary band width. As an example, the experimental and theoretical (AM1+CNDOS and HF+CIS3-21G) two-photon absorption properties of the 2,2'-bi(9,9-dihexylfluorene) molecule are compared.  相似文献   

4.
The physics of the two-photon absorption process is investigated for a three-state system. The density-matrix equations for the two-photon interaction are solved in the steady-state limit assuming that the pump laser radiation is monochromatic. Collisional broadening, saturation, and Stark shifting of the two-photon resonance are investigated in detail by numerical solution of the steady-state density-matrix equations. Analytical expressions for the saturation intensity and the Stark shift are derived for the case where the single-photon transitions between the intermediate state and the initial and final states are far from resonance with the pump laser. For this case, it is found that the direction of the Stark shift is dependent on the relative magnitudes of the dipole-moment matrix elements for the single-photon transitions that couple the intermediate state with the initial and final states. Saturation and Stark shifting are also investigated for the case where the single-photon transitions between the intermediate state and the initial and final states are close to resonance with the pump laser.  相似文献   

5.
Laser-induced fluorescence (LIF) detection in conventional-size column liquid chromatography is achieved at 257 nm with a frequency-doubled argon-ion laser. Short-wavelength excitation offers two important advantages: firstly, a wide variety of analytes can be excited, and secondly, the Raman scatter of the eluent does not interfere with the fluorescence of the analytes. A standard mixture of polynuclear aromatic hydrocarbons was studied, both with LIF detection and with a commercially available sensitive conventional fluorescence detector. The improvement in the detection limits ranges from about a factory of 4 to 30; the LIF detection limits are typically at the 50 ng l?1 level, which corresponds to an injected amount of 0.5 pg.  相似文献   

6.
Two-photon absorption cross sections and spectral profiles were determined for three centrosymmetric vinyl benzenes in solvents of differing polarity and polarizability. The data do not correlate with parameters that characterize dielectric properties of the solvents. Rather, the effect of solvent depends on the solute, and even subtle structural changes in the latter can result in pronounced solvent-dependent differences in the absorption cross section. Our data highlight the need for more sophisticated models that can simulate the perturbing effects of a solvent in the two-photon process.  相似文献   

7.
The linear and nonlinear optical properties of the heteroaromatic push-pull-push two-photon absorbing dye N-methyl-2,5-bis[1-(N-methylpyrid-4-yl)ethen-2-yl]-pyrrole ditriflate (PEPEP) are reported. The determination of the two-photon absorption (TPA) cross-section spectrum has been performed with different techniques: femtosecond TPA-white light continuum probe experiments, two-photon-induced fluorescence, and open aperture Z-scan measurements using both nanosecond and femtosecond laser pulses. The measured TPA cross sections and their wavelength dispersion show a marked dependence on the parameters of the laser pulses and on the measurement technique employed. These properties are discussed in terms of the different microscopic mechanisms that can contribute to the multiphoton absorption processes, with different weight depending on the measurement conditions and on the photophysical parameters of the dye.  相似文献   

8.
We study the porphyrin S1→S0 fluorescence and the photosensitized singlet oxygen 1Δg3Σg phosphorescence, both originating from absorption of photons with energy less than the porphyrin S0→S1 transition energy. By measuring the excitation intensity dependence of fluorescence at lowered sample temperatures, we are able to discriminate between two parallel processes of one-photon hot-band absorption (HBA) and simultaneous two-photon absorption (TPA). When the HBA and TPA contributions are comparable in magnitude, we use this new method to determine absolute TPA cross-section. We also demonstrate for the first time a singlet oxygen photosensitization via HBA in porphyrin.  相似文献   

9.
Branched macromolecular structures are now an important area of research for enhanced two-photon absorption (TPA) cross sections. The mechanism of this enhancement has been suggested as a complex interplay between intramolecular interactions and the extent of charge-transfer character in the branches. In order to probe these processes more clearly, excited-state dynamics of multibranched chromophores by means of femtosecond transient absorption spectroscopy are reported. Investigations have been carried out on the PRL dye series (PRL-101, PRL-501, PRL-701), which have shown cooperative enhancement of the TPA cross section. Upon photoexcitation, transient absorption measurements have shown the presence of a localized charge-transfer (intramolecular charge transfer, ICT) state independent of branching. The results point to ultrafast localization of charge in this particular system of chromophores. Pump-probe measurements in highly polar solvents have shown the presence of a nonemissive charge-transfer state which is a solvent stabilized and conformationally relaxed state. The population of this nonemissive state increases from monomer to trimer, and thus, it has been used as indicator of the polar nature of the Franck-Condon state. These results have shown an increase of charge-transfer character of the excited state with an increase in branching, and this explains the relative increase in the two-photon cross section of the PRL series.  相似文献   

10.
A blue (452 nm) frequency-doubled diode laser with a quasi-cw optical output power of 10 microW is used for indirect laser-induced fluorescence detection in combination with the capillary electrophoretic separation of inorganic anions. As fluorescing probe ion the anion of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) was selected having an absorption maximum of 454 nm in alkaline medium. Employing a capillary coated with linear acrylamide, baseline separation of eight inorganic anions was possible within 5 min. With a separation buffer containing 50 micromol.L(-1) HPTS and 10 mmol.L(-1) lysine the limits of detection for sulfate, nitrite, nitrate, azide, thiocyanate, and chlorate were between 0.9 and 4.7 micromol.L(-1). Separation of chloride and sulfate was achieved by adding 0.25 mmol.L(-1) calcium hydroxide to the separation buffer. Inorganic anions in several mineral and tap water samples have been determined with the technique developed and results are compared to data obtained by ion chromatography in combination with conductivity detection after conductivity suppression.  相似文献   

11.
12.
13.
The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10(dAdT)10 and (dA)20(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity shows that, in addition to two-photon ionization, one-photon ionization takes place for (dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine-containing oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in concentrations comparable to that of the hydrated electron. The quantum yield for one-photon ionization of the oligomers (ca. 10(-3)) is higher by at least 1 order of magnitude than that of dAMP, showing clearly that organization of the bases in single and double helices leads to an important lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating adenine-thymine sequences, to undergo one-photon ionization is lower than that of (dA)20(dT)20 and (dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a decrease of quantum yield for one photon ionization by about a factor of 2.  相似文献   

14.
Damped response theory is applied to the calculation of two-photon absorption (TPA) spectra, which are determined directly, at each frequency, from a modified damped cubic response function. The TPA spectrum may therefore be evaluated for selected frequency ranges, making the damped TPA approach attractive for calculations on large molecules with a high density of states, where the calculation of TPA using standard theory is more problematic. Damped response theory can also be applied to the case of intermediate state resonances, where the standard TPA expression is divergent. Both exact damped response theory and its application within density functional theory are discussed. The latter is implemented using an atomic-orbital based density matrix formulation, which makes the approach especially suitable for studies on large systems. A test preliminary study is presented for the TPA spectrum of R-(+)-1,1'-bi(2-naphtol).  相似文献   

15.
A simplified yet sensitiive system is described for the detection of the two-photon ionization signal in solution. The photo-ionization cell consists of a quartz cuvette and a pair of stainless steel electrodes. Several aromatic compounds, including quinones, can be detected in the ng l?1–mg l?1 range both in hexane and in methanol; detection limits of pyrene in hexane and in methanol are 0.02 μg l?1 and 4 μg l?1, respectively. The detectability in hexane is much better than that in methanol. The detection limits and the molar absorptivities at the excitation wavelength are shown to be correlated.  相似文献   

16.
Two-photon absorption (2PA) properties of self-assembled porphyrins were investigated. The butadiyne-linked porphyrin array exhibited a 20 times larger 2PA cross section than the meso-meso-linked self-assembled array due to the expansion of pi-conjugation. Higher-order nonlinear absorption was also observed in the former porphyrin.  相似文献   

17.
A vitreous carbon atomizer is described for use in laser-excited atomic fluorescence spectrometry and is applied to the determination of thallium in aqueous solution. When a frequency-doubled N2 laser-pumped dye laser is used to excite the atomic thallium at 276.8 nm and the combined direct-line fluorescence and stepwise-line fluorescence are detected at 352.9 and 351.9 nm, respectively, the limit of detection is 2.5 × 10-14 g in a 0.5-pg ml-1 sample solution. The calibration curve for thallium has a linear range extending over six orders of magnitude.  相似文献   

18.
A model for aggregates of quadrupolar (DAD or ADA) molecules is presented that relaxes the dipolar approximation for intermolecular electrostatic interactions. New effects, including the appearance of bound biexcitons in clusters of nonpolar molecules, are predicted with interesting and unforeseen consequences on the material properties. Specifically, we show that the large two-photon absorption cross-section, typical of quadrupolar chromophores, can be further amplified by orders of magnitude as a result of aggregation.  相似文献   

19.
This paper presents, to the best of our knowledge, the first study of two-photon absorption (2PA) spectra of a number of symmetrically substituted phthalocyanines in the excitation wavelength region from lambda(ex)=800 to 1600 nm. The selected molecules vary by position of substitution (alpha or beta), number of substituent groups (4, 8, or 16), and presence or absence of metal (Zn or Al) in the center. For all phthalocyanines we find a moderately strong (sigma(2) approximately 100-200 GM), pure electronic, gerade-gerade (g-g) 2PA transition, which shows up as a well-resolved relatively narrow peak in the energy region between Q and B bands (lambda(ex)=870-1100 nm). In metallophthalocyanines (MPcs) this lowest g-g transition is followed by the onset of other higher-frequency 2PA transitions. In some metal-free phthalocyanines (H(2)Pcs) we also reveal a second, broader 2PA transition at slightly higher frequency. In both MPcs and H(2)Pcs, we find a strong monotonic increase of integrated strength of the lowest g-g transition as a function of electron-accepting ability of peripheral substituents, expressed as their aggregated Hammett constant. By using few essential states models (three states for MPcs and four states for H(2)Pcs) we demonstrate the primary role of excited-state transition dipole moment in this effect.  相似文献   

20.
We report a comprehensive time-dependent density functional theory (TDDFT) study of one-photon and two-photon absorption (OPA and TPA, respectively) spectra for donor-pi-acceptor molecules. The calculated excitation energies were generally shown to be in good agreement with experiment, particularly when compared to results from measurements carried out in a nonpolar solvent, although the oscillator strengths were overestimated in some cases. Calculated TPA cross sections applying the two-state approximation were shown to be highly dependent on the form of the line-shape function used. Although a good agreement with experimental TPA spectra was generally observed, the wide range in the experimentally measured values and lack of systematic experimental data on solvent effects limited a detailed comparison as yet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号