首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear and nonlinear optical properties of the heteroaromatic push-pull-push two-photon absorbing dye N-methyl-2,5-bis[1-(N-methylpyrid-4-yl)ethen-2-yl]-pyrrole ditriflate (PEPEP) are reported. The determination of the two-photon absorption (TPA) cross-section spectrum has been performed with different techniques: femtosecond TPA-white light continuum probe experiments, two-photon-induced fluorescence, and open aperture Z-scan measurements using both nanosecond and femtosecond laser pulses. The measured TPA cross sections and their wavelength dispersion show a marked dependence on the parameters of the laser pulses and on the measurement technique employed. These properties are discussed in terms of the different microscopic mechanisms that can contribute to the multiphoton absorption processes, with different weight depending on the measurement conditions and on the photophysical parameters of the dye.  相似文献   

2.
采用钯催化Heck反应制备了一种新型三苯胺-噁二唑超支化荧光聚合物PI. 用飞秒Ti:sapphire激光研究了PI的三光子和双光子上转换荧光光谱, 激发波长位于近红外区(800~1350 nm). 在1280 nm和80 fs激光激发下, PI的三光子上转换荧光发射波长分别为525 nm(THF), 534 nm(CH2Cl2)和578 nm(DMF). 在800 nm和150 fs激光激发下, PI的双光子上转换荧光发射波长分别为527 nm(THF), 532 nm(CH2Cl2)和573 nm(DMF). 采用非线性透过率法测定荧光聚合物PI的三光子和双光子吸收系数. 系统研究了PI的线性吸收和透过、单光子荧光、荧光寿命、前线轨道能级及热稳定性. 实验结果表明, 三苯胺-噁二唑超支化共轭聚合物的多光子吸收和上转换荧光发射性能比树型分子或线型聚合物更为优异.  相似文献   

3.
吡啶星型分子的双光子上转换荧光特性   总被引:1,自引:0,他引:1  
用飞秒Ti:sapphire激光测定了一种星型吡啶分子2,5-二{4-{4-[N,N-二(4-吡啶乙烯基)苯基氨基]苯乙烯基}苯基}-1,3,4-噁二唑(PyPASPO)的双光子吸收截面及上转换荧光光谱.采用非线性透过率法测得二氯甲烷和四氢呋喃溶液中的其双光子吸收截面分别为412.5 和288.8 GM. 系统研究了吡啶星形分子PyPASPO的线性吸收和透过、单光子荧光、荧光寿命及激发-发射三维荧光谱和前线轨道能级. 在800 nm和150 fs钛宝石激光器激发下PyPASPO在二氯甲烷和四氢呋喃溶液中的双光子上转换荧光发射波长分别位于571和 525 nm,在二氯甲烷溶液中单光子荧光峰位于532 nm,荧光寿命为1.24 ns. HOMO和LUMO能级分别为-5.21 eV和-2.92 eV.增大分子内电荷转移有效增强了吡啶星形分子的双光子吸收和双光子上转换荧光发射能力  相似文献   

4.
[reaction: see text] Two-photon induced Wolff rearrangement of a terphenyl diazoketone 1 was achieved by using focused laser pulses of 532 nm from a Q-switched Nd:YAG laser. The nonfluorescent terphenyl diazoketone 1 was transformed into a fluorescent ester derivative 4, which can be detected in situ using the focused laser pulses at 532 nm. Laser power dependence studies show that the Wolff rearrangement is induced by two-photon absorption of the terphenyl diazoketone 1, but suggests that more than two photons of 532 nm are involved (a multiphoton process) in excitation of the ester derivative 4.  相似文献   

5.
Ji L  Fang Q  Yuan MS  Liu ZQ  Shen YX  Chen HF 《Organic letters》2010,12(22):5192-5195
Bridging the triindole core and triarylboryl acceptor by an ethenylene linker at the 3,8,13- or 2,7,12-position, the resultant 3-BET and 2-BET show two-photon absorption (TPA) cross sections of δ = 2100 and 2500 GM (at 810 nm by femtosecond pulses in THF), respectively. The TPA enhancement of the 2,7,12-isomers is also found when comparing 3-BYT and 2-BYT (δ = 870 and 1900 GM) and 3-NET and 2-NET (36 and 400 GM).  相似文献   

6.
The experiments described here demonstrate the use of two-photon excitation (TPE) to sensitize nitric oxide (NO) release from a dye-derivatized iron/sulfur/nitrosyl cluster Fe2(mu-RS)2(NO)4 (Fluor-RSE, RS = 2-thioethyl ester of fluorescein) with near-infrared (NIR) light in the form of femtosecond pulses from a Ti:sapphire laser. TPE at 800 nm leads both to weak fluorescence from the organic chromophore at lambda(max) = 532 nm and to NO labilization from the cluster. Since the emission from the reference compound Fluor-Et (the ethyl ester of fluorescein) under identical conditions (50/50 CH3CN/phosphate buffer (1 mM) at pH 7.4) is considerably more intense, the weaker emission from Fluor-RSE and the NO generation indicate that the fluorescein excited states initially formed by TPE are largely quenched by energy transfer to the cluster core. The two-photon absorption (TPA) cross section of Fluor-RSE at 800 nm was determined to be delta = 63 +/- 7 GM via the TPA photoluminescence technique. This can be compared to the TPA cross section of 36 GM reported for fluorescein dye in pH 11 aqueous solution and of 32 +/- 3 GM for Fluor-Et measured under conditions comparable to those used for Fluor-RSE. Pulse intensity dependence studies showed that the quantity of NO released from the latter as the result of NIR photoexcitation follows a quadratic relationship to excitation intensity, consistent with the expectation for a TPE process. These studies demonstrate the potential utility of a two-photon antenna for sensitization of the photochemical release of an active agent (in this case, NO) from a photoactive pro-drug.  相似文献   

7.
Two new three-branched fluorenylene-vinylene derivatives were synthesized by triple Heck-type or Horner-Wadsworth-Emmons reactions. Their one-photon absorption and fluorescence as well as their two-photon absorption properties are reported. These compounds, which combine very high solubility in organic solvents, high fluorescence quantum yield and giant two-photon absorption cross-sections in the red-NIR region (up to 3660 GM, in the femtosecond regime) are promising candidates for both optical power limiting applications and two-photon laser scanning microscopy.  相似文献   

8.
We observe a substantial matrix‐assisted laser desorption/ionization (MALDI) signal when irradiating femtosecond laser pulses in the near‐infrared spectral range centered around 800 nm and using standard MALDI matrices with absorption bands in the ultraviolet (UV) regime. The laser pulse energy dependence of this novel phenomenon is investigated in comparison with MALDI with near‐UV laser pulses. Our observations show that multiphoton absorption/ionization could be a major issue among the MALDI processes when the sample is irradiated with ultra‐short laser pulses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Novel multi-branched two-photon absorbing dyes containing highly efficient UV–vis curing initiator, ketocoumarin (3-acetyl-7-diethylaminocoumarin), were synthesized. There linear and non-linear optical properties were studied and the cooperatively enhanced two-photon absorption of two- and three-branched dyes were confirmed by femtosecond laser pulses. The largest two-photon absorption cross-section was obtained as 1117 GM. The results of photobleaching experiments showed that all dyes had very fast electron transferring speed with the commercial coinitiator o-Cl-hexaarylbisimidazoles (HABI). The two-photon polymerization initiated by a bimolecular system composed of the two-branched dye and HABI was investigated. This photopolymer system presented high photoinitiating efficiency. The single-shot two-photon exposure of the resin film was achieved with a threshold as 1 TW/cm2 at 800 nm.  相似文献   

10.
One-color control of colorization/decolorization reactions of diarylethene molecules was attained by using nonresonant high-order multiphoton absorption processes with a near-infrared (NIR) femtosecond laser pulse at 1.28 μm with 35 fs full width at half-maximum (fwhm). The intensity of a rather weak laser pulse (<1 nJ/pulse) can induce the simultaneous three-photon absorption leading to the colorization, while much weaker intensity induces two-photon absorption resulting in the decolorization. The spatial patterning concomitant with higher-order multiphoton absorption processes was also demonstrated.  相似文献   

11.
本工作合成了具有D-π-A-π-D对称结构的化合物2,5-双(对二甲氨基苯乙烯基)吡嗪。利用飞秒激光器研究了2,5-双(对二甲氨基苯乙烯基)吡嗪的双光子吸收特性,获得了在820 nm处的最大双光子吸收截面(σ= 212 GM)。荧光发射强度与激发光强平方的线性关系证明了2,5-双(对二甲氨基苯乙烯基)吡嗪的双光子诱导发光机制。  相似文献   

12.
The irradiation of 2-diazo-1(2H)-naphthalenone (1), the common component of positive photoresists, with 800 nm pulses of ultrafast laser results in Wolff rearrangement via nonresonant two-photon absorbance of light. The 10% conversion of starting material resulting in the formation of methyl 1H-indene-3-carboxylate (2) was achieved after 11 min of irradiation of the methanol solution of 1 with an unfocused beam of a Ti:Sapphire laser operating at 1 kHz. The two-photon cross-section of the diazonaphthoquinone 1 at 800 nm was calculated to be sigma = 2.2 x 10-51 cm4 s photon-1 (0.2 GM).  相似文献   

13.
A comprehensive analysis of the well-known open aperture Z-scan method, using a modified equation for the change in transmittance, is presented and accounts for discrepancies in two-photon absorption (2PA) cross sections between picosecond and femtosecond excitation. This new approach takes into account excited-state absorption and stimulated emission of the molecules studied. The two-photon absorption cross-section spectra of a series of six fluorene-based derivatives, determined using picosecond pulses, over a broad spectral range (500-900 nm), and this approach using a modified fitting procedure in the open aperture Z-scan is reported. We demonstrate that the fluorene derivatives exhibit two-photon absorption cross-section values between 700 and 5000 GM, when excited into the two-photon allowed electronic state. Excitation anisotropy spectra, measured to investigate the nature of the observed linear and nonlinear absorption bands, are presented and provide insight into the 2PA process.  相似文献   

14.
Biological nano-ceramic materials for holographic data storage   总被引:4,自引:0,他引:4  
Here we present, a two-photon absorption (2PA) study in Fe2+ and Fe3+ oxidation states of cytochrome c molecule in water solution, using the femtosecond Z-scan technique with pulses from 560 to 850 nm. No qualitative difference was observed in the 2PA process for the two Fe oxidation states. The 2PA cross-sections, for both samples, increase as the wavelength approaches the absorption band, in agreement with the resonant denominator in the sum-over states model, presenting a maximum value of approximately 1000 GM at about 600 nm.  相似文献   

15.
The excitation of pBr322 supercoiled plasmid DNA with intense near-IR 810 nm fs laser pulses by a simultaneous multiphoton absorption mechanism results in single-strand breaks after treatment of the irradiated samples with Micrococcus luteus UV endonuclease. This enzyme cleaves DNA strands at sites of cyclobutane dimers that are formed by the simultaneous absorption of three (or more) 810 nm IR photons (pulse width approximately 140 fs, 76 MHz pulse repetition, average power output focused through 10x microscope objective is approximately 1.2 MW/cm2). Direct single-strand breaks (without treatment with M. luteus) were not observed under these conditions. However, in the presence of 6 microM of the intercalator proflavine (PF), both direct single- and double-strand breaks are observed under conditions where substantial fractions of undamaged supercoiled DNA molecules are still present. The fraction of direct double-strand breaks is 30 +/- 5% of all measurable strand cleavage events, is independent of dosage (up to 6.4 GJ/cm2) and is proportional to In, where I is the average power/area of the 810 nm fs laser pulses, and n = 3 +/- 1. The nicking of two DNA strands in the immediate vicinity of the excited PF molecules gives rise to this double-strand cleavage. In contrast, excitation of the same samples under low-power, single-photon absorption conditions (approximately 400-500 nm) gives rise predominantly to single-strand breaks, but some double-strand breaks are observed at the higher dosages. Thus, single-photon excitation with 400-500 nm light and multiphoton activation of PF by near-IR fs laser pulses produces different distributions of single- and double-strand breaks. These results suggest that DNA strand cleavage originates from unrelaxed, higher excited states when PF is excited by simultaneous IR multiphoton absorption processes.  相似文献   

16.
17.
We report two-photon Lysotrackers (CLT-blue and CLT-yellow) that can be excited by 750-840 nm femtosecond laser pulses and emit at 470 and 550 nm, respectively. They can be easily loaded into cells and tissue slices for visualization of lysosomes in live cells and tissues for a long period of time through two-photon microscopy. When combined with appropriate two-photon probes for other biological targets, these novel probes would greatly facilitate the two-photon microscopy colocalization experiments.  相似文献   

18.
A novel laser system has been developed to study the effects of multiple laser pulses of differing wavelengths on cutaneous blood vessels in vivo, using the hamster dorsal skin flap preparation and in vitro, using cuvettes of whole or diluted blood. The system permits sequenced irradiation with well-defined intrapulse spacing at 532 nm, using a long-pulse frequency-doubled Nd:YAG laser, and at 1064 nm, using a long-pulse Nd:YAG laser. Using this system, we have identified a parameter space where two pulses of different wavelengths act in a synergistic manner to effect permanent vessel damage at radiant exposures where the two pulses individually have little or no effect. Using a two-color pump-probe technique in vitro, we have identified a phenomenon we call greenlight-induced infrared absorption, where a pulse of green light causes photochemical and photothermal modifications to the chemical constituents of blood and results in enhanced infrared absorption. We identify a new chemical species, met-hemoglobin, not normally present in healthy human blood but formed during laser photocoagulation which we believe is implicated in the enhanced near-infrared absorption.  相似文献   

19.
We report a nanosecond laser study of the transient absorption of hydrated electrons generated by multiphoton ionisation of liquid water upon excitation at 266 and 400 nm by femtosecond pulses with power densities higher than 1 TW/cm2. For both wavelengths, as the pump power density increases, the signal amplitude increases and the decay becomes faster proving that more electrons are produced. However, we show that in the nanosecond time range, under pump power densities higher than 1 TW/cm2, the distribution of the hydrated electrons is not uniform along the optical pathway of the pump beam in the water sample.  相似文献   

20.
Two-photon excitation studies of hypocrellins for photodynamic therapy   总被引:8,自引:0,他引:8  
The photophysical and photochemical properties of hypocrellins (HA and HB) are examined with two-photon excitations at 800 nm using femtosecond pulses from a Ti:sapphire laser. The two-photon excited fluorescence spectra of HA and HB are very similar to those obtained by one-photon excitation, which may indicate that the two-photon induced photodynamic processes of hypocrellins are similar to one-photon induced photodynamic processes. The two-photon excitation cross sections of HA and HB are measured at 800 nm as about 34.8 x 10(-50) cm(4) s/photon and 21.3 x 10(-50) cm(4) s/photon, respectively. The large two-photon cross sections of both HA and HB, suggest that the hypocrellins can be potential two-photon phototherapeutic agents. As an example for two-photon photodynamic therapy of hypocrellins, we also further examine the cell-damaging effects of HA upon two-photon illumination. Our preliminary results of cell viability test indicate hypocrellins can effectively damage the Hela cells under two-photon illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号