首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
《Current Applied Physics》2010,10(2):436-443
In the present paper molecular dynamics (MD) simulations have been preformed to investigate the surface melting process and microscopic mechanism of Nb(1 1 0) plane in the atomic scale with a modified analytic embedded atom method (MAEAM). On the basis of the MD relaxation dependence of averaged internal energy and layer structure factor at given temperatures, the melting point of the sample has been estimated to be 2510 K. Then by the above results the Nb(1 1 0) plane melting process has been approximately divided into two stages: first the layer-by-layer premelting phase in the surface region and then a simultaneous abrupt melting transition for the inner layers. According to the variation of the averaged internal energy of the inner atomic layer, the melting latent heat has been calculated and the result is in good agreement with the experimental value. The simulated snapshots of atomic configuration for Nb(1 1 0) plane have indicated that the dynamically microscopic mechanism of melting nucleation during the melting transition.  相似文献   

2.
Semi-empirical equations of state based on Lindemann's law have been developed to determine the pressure (P) dependence of the melting temperature (Tm) of Li, K, Rb and Cs. The basic inputs are Grüneisen parameter and the bulk modulus. TmP variations exhibit maximum melting temperature with concave downwards. The maximum in Tm for Cs is found to occur at pressure of 2.2 GPa whereas for Li, K and Rb it falls in the range of 7–9.5 GPa. The predicted values of Tm as a function of pressure, based on the present empirical relation, fit quite well with the available experimental data. The empirical relation can also be used to extrapolate Tm at higher pressure from the values available at lower pressures.  相似文献   

3.
The ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressureEquation of state for technetium from X-ray diffraction and first-principle calculations scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with an ambient isothermal bulk modulus of B0T=288 GPa and a first pressure derivative of B′=5.9(2) best represent the compression behavior of technetium metal.  相似文献   

4.
《Applied Surface Science》2001,169(1-2):92-98
Self-assembled In0.4Ga0.6As island arrays have been grown on (3 1 1)B GaAs substrates by using atomic hydrogen-assisted molecular beam epitaxy (H-MBE). The evolution process of surface morphology with deposition has been analyzed by atomic force microscopy (AFM) and the development of lateral ordering has been highlighted by two-dimensional fast Fourier transformation (2DFFT) analysis of the AFM images. It is revealed that the InGaAs islands are arranged in nearly perfect two-dimensional (2D) square-like lattice with two sides parallel to [0 1 −1] and [−2 3 3] azimuths. Such an alignment of islands is coincident with the anisotropy of bulk elastic modulus of the GaAs (3 1 1)B substrate.  相似文献   

5.
The elastic properties, electronic structure and thermodynamic behavior of the TaB have been investigated for the first time in this work. Using first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT), the ground state properties and equation of state of TaB have been obtained. The average zero-pressure bulk modulus of TaB is 302 GPa. By analyzing the elastically anisotropic behavior and the relative structure parameters of TaB, we found that the crystal cell along the b-axis was more compressible than along the a and c axes. The calculated ratio of bulk modulus and shear modulus (B/G) for TaB is 1.58, demonstrating that TaB is rather brittle. From the elastic stiffness constants, we found that TaB in the Cmcm phase is mechanically stable. The calculated hardness of TaB is 28.6 GPa which is close to the previous data. Moreover, using the Gibbs 2 model, the thermodynamic properties such as the thermal expansion and Debye temperature of TaB have been obtained firstly. At the ambient temperature, the Debye temperatures of TaB are 792 K and 845 K from GGA calculation and LDA calculation, respectively.  相似文献   

6.
The lattice parameters, cell volume, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio are calculated at zero pressure, and their values are in excellent agreement with the available data, for TiN, Ti2N and Ti3N2. By using the elastic stability criteria, it is shown that the three structures are all stable. The brittle/ductile behaviors are assessed in the pressures from 0 GPa to 50 GPa. Our calculations present that the performances for TiN, Ti2N and Ti3N2 become from brittle to ductile with pressure rise. The Debye temperature rises as pressure increase. With increasing N content, the enhancement of covalent interactions and decline of metallicity lead to the increase of the micro-hardness. Their constant volume heat capacities increase rapidly in the lower temperature, at a given pressure. At higher temperature, the heat capacities are close to the Dulong–Petit limit, and the heat capacities of TiN and Ti2N are larger than that of c-BN. The thermal expansion coefficients of titanium nitrides are slightly larger than that of c-BN. The band structure and the total Density of States (DOS) are calculated at 0 GPa and 50 GPa. The results show that TiN and Ti2N present metallic character. Ti3N2 present semiconducting character. The band structures have some discrepancies between 0 GPa and 50 GPa. The extent of energy dispersion increases slightly at 50 GPa, which means that the itinerant character of electrons becomes stronger at 50 GPa. The main bonding peaks of TiN, Ti2N and Ti3N2 locate in the range from −10 to 10 eV, which originate from the contribution of valance electron numbers of Ti s, Ti p, Ti d, N s and N p orbits. We can also find that the pressure makes that the total DOS decrease at the Fermi level for Ti2N. The bonding behavior of N–Ti compounds is a combination of covalent and ionic nature. As N content increases, valence band broadens, valence electron concentration increases, and covalent interactions become stronger. This is reflected in shortening of Ti–N bonds.  相似文献   

7.
A detailed theoretical study of the isothermal and adiabatic bulk moduli of MgF2 with a fluorite structure under high pressure and temperature has been carried out by means of first-principles density functional theory calculations combined with the quasi-harmonic Debye model in which the phononic effects are considered. Particular attention is paid to the prediction of the isothermal bulk modulus and its first and second pressure derivatives for the first time. The calculated ground state properties agree well with other theoretical values. At extended pressure and temperature ranges, the variation of the bulk modulus which plays a central role in the formulation of approximate equations of state has also been predicted. The properties of MgF2 with a fluorite structure are summarized in the pressure range of 0–135 GPa and the temperature up to melting temperature 1500 K.  相似文献   

8.
Two new carbon allotropes (H-carbon and S-carbon) are proposed, as possible candidates for the intermediate superhard phases between graphite and diamond obtained in the process of cold compressing graphite, based on the results of first-principles calculations. Both H-carbon and S-carbon are more stable than previously proposed M-carbon and W-carbon and their bulk modulus are comparable to that of diamond. H-carbon is an indirect-band-gap semiconductor with a gap of 4.459 eV and S-carbon is a direct-band-gap semiconductor with a gap of 4.343 eV. The transition pressure from cold compressing graphite is 10.08 GPa and 5.93 GPa for H-carbon and S-carbon, respectively, which is in consistent with the recent experimental report.  相似文献   

9.
The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold–gold interactions while a Lennard–Jones (L–J) potential is used to describe the gold–GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold–gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu–C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order–disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.  相似文献   

10.
The relaxation and the thermal vibrations of the NaF(100) surface are investigated in the temperature range between 25 K and 230 K by means of low-energy electron diffraction (LEED) and a subsequent I(V) structure analysis based on the tensor LEED approach (TLEED). According to the experiments, the NaF(100) surface is not significantly relaxed and has the ideal truncated bulk structure. The thermal vibrational amplitudes of the ions in the topmost layer are significantly enhanced compared to the bulk by a factor of 1.35 ± 0.15 and are equal within the error-bars for Na+ and F? ions. Moreover, the relaxation and the dynamics of the NaF(100) surface are investigated using periodic density functional theory (DFT) calculations using pseudopotentials. In agreement with the experimental findings, the calculated relaxation of the NaF(100) surface is weak with static shifts of the ions of 0.01 Å to 0.02 Å. In the topmost layer, the Na+ ions are predicted to be slightly inward shifted, whereas the F? ions are outward shifted, in accordance to predictions of previous shell-model calculations. A Born Oppenheimer molecular dynamics (BO-MD) simulation of the dynamics at the NaF(100) surface leads to a smaller enhancement of thermal motions of the ions at the surface compared to the experiment.  相似文献   

11.
The geometry of hexafluorotribenzo[a,g,m]coronene with n-carbon alkyl chains [FTBC-Cn (n = 4, 6, 8, 12)] and their supramolecule self-assembly on a highly oriented pyrolytic graphite (HOPG) surface has been optimized by molecular dynamics simulations using COMPASS force field at 0 K, 298 K, 333 K and 353 K. Electronic properties and intermolecular interactions in graphene supramolecule assembly have been studied by the first principle methods based on the density functional theory (DFT). It is indicated that the thermal stability and electronic properties of graphene molecules can be tunable by attaching alkyl chains to a triangular graphene sheet, and changing the length of the alkyl chain, and self-assembling on a certain substrate. The main results are as follows. The geometry and energy gap of the FTBC-Cn single molecule and their supramolecule self-assembly on HOPG are both stable with the changes of the temperature from 0 K to 353 K and the number of carbon atoms on the alkyl chain. The simulation results of geometry, energy gap as well as STM images of graphene supramolecule assembly are in good agreement with the corresponding experimental results in room temperature. Furthermore, the electronic properties of graphene supramolecule assembly at the temperatures of 0 K, 333 K and 353 K are also predicted. When a triangular graphene molecule attached with six alkyl chains, the energy gaps are increased and stabilized at the temperature from 0 K to 353 K. After FTBC-Cn molecule self-assembly on a HOPG substrate, the energy gap is reduced but still stable.  相似文献   

12.
A first-principles density-functional-theory method has been used to reinvestigate the mechanical and dynamical stability of the metallic phase of AlH3 between 65 and 110 GPa. The electronic properties and phonon dynamics as a function of pressure are also explored. We find electron–phonon superconductivity in the cubic Pm-3n structure with critical temperature Tc = 37 K at 70 GPa which decreases rapidly with the increase of pressure. Further unlike a previously calculated Tc-value of 24 K at 110 GPa, we do not find any superconductivity of significance at this pressure which is consistent with experimental observation.  相似文献   

13.
We study the strain effect on the surface melting of Si(1 1 1) flat surfaces using Monte Carlo simulation and the empirical Tersoff–Dodson potential. The in-plane strain effect on the atomic structures and the atomic dynamics were investigated at a fixed temperature of 0.82Tm. Surface melting of Si(1 1 1) was induced by either compressive or tensile strain. As the strength of strain increases beyond the critical strength of about 1.5 and 2.5%, respectively, for compressive and tensile strain, the waiting time for surface melting decreases. In the lateral pair correlation function of the melting layers, only the nearest-neighbor correlation remains. Si atoms in the melting layers has a constant diffusion coefficient irrespective of the sign and strength of applied strain.  相似文献   

14.
The effects of doping Al and Mn on the cohesive and thermophysical properties of MgB2 have been investigated using a Rigid Ion Model (RIM). The interatomic potential of this model includes contributions from the long-range Coulomb attraction and the short-range overlap repulsion and the van der Waals attraction. This model has been applied to describe the temperature dependence of the specific heat of MgB2, Mg1−xAlxB2 (x = 0.1–0.9) and Mg1−xMnxB2 (x = 0.01–0.04) in the temperature range 5 K  T  1000 K. The calculated results on cohesive energy (ϕ), Bulk modulus (BT), molecular force constant (f), Restrahalen frequency (ν0), Debye temperature (ΘD) and Gruneisen parameter (γ) are also reported for these materials. Our results on Bulk modulus, Restrahalen frequency and Debye temperature are closer to the available experimental data. The comparison between our calculated and available experimental results on the specific heat at constant volume for MgB2 and Mg1−xAlxB2 (x = 0.1–0.4), particularly, at lower temperatures has shown almost an excellent agreement. The trend of variation of the specific heat with temperature is more or less similar in pure and doped MgB2.  相似文献   

15.
《Applied Acoustics》2007,68(11-12):1468-1484
Measurements of the surface impedance and the physical parameters of seven glass wool samples and six polyester fibre samples with flow resistivities between 4100 and 69,900 Pa s m−2 have been made. Comparisons of measured absorption coefficients and those predicted from the Johnson–Allard formulae using the measured and deduced physical parameters show discrepancies that exceed 20% for some samples and frequencies. By modifying the Johnson–Allard formula for effective density and by introducing a correction factor that is a function of flow resistivity based on data fitting, it has been found possible to improve the predictions. However, it has also been found that a similar modification of the formula for bulk modulus is necessary to reduce the discrepancies with data to below 5% in the frequency range between 800 Hz and 5 kHz.  相似文献   

16.
We present vibrational dynamics and thermodynamics for the (1 0 0) surfaces of Cu, Ag, Pd, Pt and Au using a real space approach. The force field for these systems is described by density functional theory. The changes in the vibrational dynamics and thermodynamics from those in bulk are confined mostly to the first-layer. A substantial enhancement of the low-frequency end of the acoustic branch was found and is related to a loosening of the bond at the surface. The thermodynamics of the first-layer also show significant differences (higher heat capacity, lower free energy and higher mean vibrational square amplitudes) from what obtains in bulk. Comparing these results with those calculated using embedded-atom method potentials, we discovered that for Ag(1 0 0) and Cu(1 0 0), the two methods yield very similar results while for Pd(1 0 0), Pt(1 0 0) and Au(1 0 0) there are substantial differences.  相似文献   

17.
18.
We provided the first theoretical evidence for a medium-range ordered phase in high pressure strontium from the first-principles calculations. At the absolute zero temperature, the enthalpy–pressure relation shows that the bcc and hcp are energetically more favorable than the other experimentally observed phases between 24 and 27 GPa. In the present work, we concentrate on the bcc phase because we found a link to a medium-range ordered phase. Our results reveal that the bcc phonon dispersion at the N and H points starts softening at around 24.1 GPa. The ab initio molecular dynamics at 300 K and 27 GPa showed that the bcc is quickly transformed into a lower energy structure with R3c symmetry and distorted basis. The simulated diffraction patterns showed that the R3c structure has only a single major peak at low angle. The R3c peak locates near the first peak of the bcc structure. This is the evidence of the so-called medium-range ordered phase. This structure is a strong candidate for the unsolved S-phase reported by experiments.  相似文献   

19.
A.V. Vasev 《Surface science》2008,602(11):1933-1937
Optical properties of MBE-grown GaAs(0 0 1) surfaces have been studied by spectroscopic ellipsometry under dynamic conditions of ramp heating and cooling after desorption of passivating As-cap-layer with low pressure H2 atmosphere (14 Torr) applied to the surface. The temperature dependence of GaAs pseudo-dielectric function with atomically smooth (0 0 1) surface carrying the fixed Ga-rich (4 × 2) reconstruction was obtained for the temperature range of 160–600 °C. It is shown ellipsometrically that GaAs(0 0 1) heating in the molecular hydrogen atmosphere results in the formation of hydrogenated layer on the surface.  相似文献   

20.
The search for anionic conductors based on solid polymer electrolytes is important for the development of photo-electrochemical (PEC) solar cells due to their many favourable chemical and physical properties. Although solid polymer electrolytes have been extensively studied as cation, mainly lithium ion, conductors for applications in secondary batteries, their use as anionic conductors have not been studied in greater detail. In a previous paper we reported the application of a PEO based iodide ion conducting electrolyte in a PEC solar cell. This electrolyte had the composition PEO: Pr4N+I? = 9:1 with 50 wt.% ethylene carbonate (EC). In this work we have studied the effect of incorporating alumina filler on the properties of this electrolyte. The investigation was extended to electrical and dielectric measurements including high frequency impedance spectroscopy and thermal analysis.In the DSC themograms two endothermic peaks have been observed on heating, one of these peaks is attributed with the melting of the PEO crystallites, while the other peak with a melting temperature ~ 30 °C is attributed to the melting of the EC rich phase. The melting temperature of both these peaks shows a marked variation with alumina content in the electrolyte. The temperature dependence of the conductivity shows that there is an abrupt conductivity increase in the first heating run evidently due to the melting of the EC rich phase. High conductivity values are retained at lower temperatures in the second heating. Conductivity isotherms show the existence of two maxima, one at ~ 5% Al2O3 content and the other at ~ 15%. The occurrence of these two maxima has been explained in terms of the interactions caused by alumina grains, the crystallinity and melting of the PEO rich phase. As seen from latent heat of melting, the crystallinity of the electrolyte has reduced considerably during the first heating run. In contrast to the conductivity enhancement caused by ceramic fillers in PEO-based cation containing electrolytes, no conductivity enhancement has been observed in the present PEO based anionic conducting materials by adding alumina except at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号