首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A Raman-based, nonlinear optical spectroscopy is a promising method for observing vibrational modes localized at buried interfaces. The principles of Raman excitation and interface-selective detection of coherent vibrations are described. Applications to air-liquid, liquid-liquid, air-solid, liquid-solid, and solid-solid interfaces are reviewed.  相似文献   

2.
Silver nanodimers with a small gap of a few nanometers aligned on glass substrates were used to enhance hyper-Raman scattering of crystal violet dye molecules. When localized surface plasmon of the dimer array was resonantly excited along the interparticle axis, hyper-Raman intensity was significantly enhanced. Moreover, the spectral appearance was slightly different between the two excitation polarizations, suggesting a possibility of two resonance contributions at one-photon and two-photon energies. Since the plasmonic property of dimer arrays can be controlled by the dimer geometry, the dimer arrays are expected to be well-defined substrates for surface-enhanced hyper-Raman spectroscopy.  相似文献   

3.
Resolution improvements in dipolar resonant excitation have been examined in a round-rod quadrupolar collision cell for values of the Mathieu characteristic exponent beta equal to n/p, where n and m are small integers (prime beta values) versus other beta values where n and p are not small (ordinary beta values). The trajectories of ions moving in the time-varying electric fields of a quadrupole with and without buffer-gas molecules were calculated to determine the relationship of prime and ordinary beta values to frequency resolution for resonant ion excitation and ejection. For prime beta values, the ion trajectory in the hyperbolic quadrupole field will be exactly periodic with a period of at most 4 pi p/Omega, where Omega is the angular frequency of the main drive radio-frequency (RF) potential. Ion trajectory simulations with prime beta versus ordinary beta values show that the motion of ions with prime beta values have simpler trajectories of shorter periods. Frequency response profiles (FRPs) for round-rod quadrupoles at zero pressure show that dipolar resonant excitations with prime beta values exhibit significantly narrower bandwidths than those with ordinary beta values. Simulations show that at 0.05 to 0.8 mTorr of nitrogen, it is possible to reduce the FRP bandwidth by 20% (measured at 50% depth).  相似文献   

4.
ABSTRACT

Discotic liquid crystals (DLCs) are considered as fascinating systems due to their unique property of self-assembly to yield different columnar structures. DLCs are organic semiconductors and create pathways for the development of numerous optical and electrical devices. The thin films of DLCs can be considered as low dimensional system which can exhibit remarkable optical and physical properties. In this article, we present a review on ultrathin films of some interesting DLC molecules at air–water and air–solid interfaces. The Langmuir monolayer and Langmuir–Blodgett films of DLC molecules are extensively studied. The ultrathin films of DLC molecules can yield highly anisotropic layer wherein the molecular orientation and aggregation can have large impact on the physicochemical properties of the film. Different surface phases with different molecular orientations as function of surface density and temperature can be obtained by forming the Langmuir monolayer of the DLC molecules at the air–water interface. The Langmuir monolayer in a particular phase can be deposited onto the active area of a device layer-by-layer by employing a highly controlled Langmuir–Blodgett technique. Here, we report some interesting results related on molecular orientation of the DLC molecules at different interfaces. Such aggregation of DLC molecules in ultrathin films may find applications in thin film-based electro-optical devices.  相似文献   

5.
We investigate the photoconductance properties of oligo(phenylene vinylene) (OPV) molecules in metal-molecule-metal junctions. The molecules are electrically contacted in a two-dimensional array of gold nanoparticles. The nanoparticles in such an array are separated by only few nanometers. This allows to bridge the distance between the nanoparticles with molecules considered as molecular wires such as OPV. We report on the photoconductance of electrically contacted OPV upon resonant optical excitation of the molecules. This resonant photoconductance is sublinear in laser intensity, which suggests that trap state dynamics of the optically excited charge carriers dominate the optoelectronic response.  相似文献   

6.
Scanning probe microscopy (SPM) is a powerful tool to study the structure and dynamics of molecules at surfaces and interfaces as well as to precisely manipulate atoms and molecules by applying an external force, by inelastic electron tunneling, or by means of an electric field. The rapid development of these SPM manipulation modes made it possible to achieve fine‐control over fundamental processes in the physics of interfaces as well as chemical reactivity, such as adsorption, diffusion, bond formation, and bond dissociation with precision at the single atom/molecule level. Their controlled use for the fabrication of atomic‐scale structures and synthesis of new, perhaps uncommon, molecules with programmed properties are reviewed. Opportunities and challenges towards the development of complex chemical systems are discussed, by analyzing potential future impacts in nanoscience and nanotechnology.  相似文献   

7.
Electrochemical surface activity arises from the interaction and geometric arrangement of molecules at electrified interfaces. We present a novel electrochemical tip‐enhanced Raman spectroscope that can access the vibrational fingerprint of less than 100 small, non‐resonant molecules adsorbed at atomically flat Au electrodes to study their adsorption geometry and chemical reactivity as a function of the applied potential. Combining experimental and simulation data for adenine/Au(111), we conclude that protonated physisorbed adenine adopts a tilted orientation at low potentials, whereas it is vertically adsorbed around the potential of zero charge. Further potential increase induces adenine deprotonation and reorientation to a planar configuration. The extension of EC‐TERS to the study of adsorbate reorientation significantly broadens the applicability of this advanced spectroelectrochemical tool for the nanoscale characterization of a full range of electrochemical interfaces.  相似文献   

8.
Coupling magnetic materials to plasmonic structures provides a pathway to dramatically increase the magneto-optical response of the resulting composite architecture. Although such optical enhancement has been demonstrated in a variety of systems, some basic aspects are scarcely known. In particular, reflectance/transmission modulations and electromagnetic field intensification, both triggered by plasmon excitations, can contribute to the magneto-optical enhancement. However, a quantitative evaluation of the impact of both factors on the magneto-optical response is lacking. To address this issue, we have measured magneto-optical Kerr spectra on corrugated gold/dielectric interfaces with magnetic (nickel and iron oxide) nanoparticles. We find that the magneto-optical activity is enhanced by up to an order of magnitude for wavelengths that are correlated to the excitation of propagating or localized surface plasmons. Our work sheds light on the fundamental principles for the observed optical response and demonstrates that the outstanding magneto-optical performance is originated by the increase of the polarization conversion efficiency, whereas the contribution of reflectance modulations is negligible.  相似文献   

9.
Using electrostatic layer-by-layer self-assembly (ELSA), the formation of multilayers with polyelectrolytes and nanoscopic polyoxometalate (POM) clusters of different sizes and charges is investigated. The multilayers are characterized by UV-vis absorption spectroscopy, optical ellipsometry, cyclic voltammetry, and atomic force microscopy. In all cases, it is possible to find experimental conditions to achieve irreversible adsorption and regular multilayer deposition. Most importantly, the surface coverage is directly related to the total charge of the POM anion and can be controlled from submonolayer to multilayer coverage by adjusting the ionic strength of the dipping solutions. Imaging the interfaces after POM deposition by atomic force microscopy reveals a granular surface texture with nanometer-sized features. The average interfacial roughness amounts to approximately 1 nm. Cyclic voltammetry indicates that the electrochemical properties of the POM clusters are fully maintained in the polyelectrolyte matrix, which opens a route toward practical applications such as sensors or heterogeneous catalysts. Moreover, the permeability toward electrochemically active probe molecules can be tailored through the multilayer architecture and deposition conditions. Finally, we note that despite the low total charge and comparably small size of the discrete POM anions, the multilayers are remarkably stable. This work provides basic guidelines for the assembly of POM-containing ELSA multilayers and provides detailed insight into characteristic surface coverage, permeability, and electrochemical properties.  相似文献   

10.
We consider the model with kinetic excitation into the quasicontinuum (KEQ) for resonant polyatomic molecules which absorb laser radiation and are surrounded by buffer molecules. KEQ takes place when the resonant molecules in the lower part of the energy spectrum interact weakly with the laser radiation, but the molecules in the quasicontinuum are rapidly excited to still higher energy and dissociate. Under these conditions the collisions of the resonant and buffer molecules lead to excitation of resonant molecules into the quasicontinuum because the population of the quasicontinuum is much less than its thermodynamical equilibrium value. It is found, that the smaller the V-T relaxation time τVT, the larger the rate of KEQ and the dissociation rate (if only τVT is not too small). Thus, if we change the experimental conditions and decrease τVT (for instance, by passing from the heavy buffer gas Xe to the light buffer gas He), for some resonant molecules we may observe that the probability of dissociation increases.  相似文献   

11.
Upconversion (UC) refers to nonlinear optical processes in which the sequential absorption of two or more photons leads to the emission of light at shorter wavelength than the excitation wavelength (anti-Stokes type emission). In contrast to other emission processes based on multiphoton absorption, upconversion can be efficiently excited even at low excitation densities. The most efficient UC mechanisms are present in solid-state materials doped with rare-earth ions. The development of nanocrystal research has evoked increasing interest in the development of synthesis routes which allow the synthesis of highly efficient, small UC particles with narrow size distribution able to form transparent solutions in a wide range of solvents. Meanwhile, high-quality UC nanocrystals can be routinely synthesized and their solubility, particle size, crystallographic phase, optical properties and shape can be controlled. In recent years, these particles have been discussed as promising alternatives to organic fluorophosphors and quantum dots in the field of medical imaging.  相似文献   

12.
The potential of optical techniques for semiconductor interfaces and growing layers is demonstrated using in particular the example of Raman spectroscopy in combination with molecular beam epitaxial (MBE) growth. Recent developments allow this method to be applied not only in situ but while growth progresses. This application critically depends on the resonant excitation which provides the required sensitivity for layers in the nanometre range. Here the heteroepitaxy of II–VI compound semiconductors on III–V substrates serves as an example to illustrate the wealth of information, e.g. on layer composition, crystallinity, growth rate, and interfacial reactivity. Very recent results on gallium nitride growth clearly reveal that such experiments can be performed even at temperatures as high as 685?°C.  相似文献   

13.
Calculations of the electric-field enhancements in the vicinity of an illuminated silver tip, modeled using a Drude dielectric response, have been performed using the finite difference time domain method. Tip-induced field enhancements, of application in "apertureless" Raman scanning near-field optical microscopy (SNOM), result from the resonant excitation of plasmons on the metal tip. The sharpness of the plasmon resonance spectrum and the highly localized nature of these modes impose conditions to better exploit tip plasmons in tip-enhanced apertureless SNOM. The effect of tip-to-substrate separation and polarization on the resolution and enhancement are analyzed, with emphasis on the different field components parallel and perpendicular to the substrate.  相似文献   

14.
The wavelength-dependent second-harmonic generation (SHG) efficiency of two simple dipolar chromophores, 4-NO2C6H4N(H)Bun (1) and 4-NO2C6H4SN(H)But (2), was compared in solution and in the solid state. Hyper-Rayleigh scattering measurements at 532 nm provided comparable molecular first hyperpolarizabilities. Both compounds crystallize in non-centrosymmetric space groups, but a more efficient arrangement of dipole moments results in a significantly larger deff value for 2. Kurtz-Perry experiments from 450 to 700 nm revealed an important difference in the resonant component of the nonlinear optical responses of these compounds; the SHG efficiency of crystalline 1 depends more strongly on the incident wavelength than that of 2. This would be in contradiction with the TD-DFT excitation energies calculated for these molecules, but the observation can be explained by the resonant contribution from low-energy interchromophore excitations enabled by pi-stacking in the crystal of 1.  相似文献   

15.
Diffusion of target molecules incorporated in the self-spreading lipid bilayer was controlled by the introduction of periodic array of metallic architecture on solid surface. Retardation of the progress of target molecules became significant when the size of gap between small metal architectures was less than a few hundred nanometers. The self-spreading dynamics of the lipid bilayer depending on the size of the small gap were analyzed semiquantitatively. Estimated change in the driving force of the spreading layer suggests that highly localized compression of the spreading layer causes selective segregation of molecules.  相似文献   

16.
We demonstrate anisotropic optical films based on liquid crystalline polymer (LCP) using a capillary force lithography (CFL). The fabricated optical films can be used as both an optical component and a self-aligning capability of liquid crystal molecules introduced on the film. Additionally, HA or PA LC can be induced on same material by controlling the water repellency of LCP surface. Moreover, surface anchoring transitions could be controlled by variation of pattern sizes and surface treatment. In this point of view, one thin optical film can act both retarder and alignment layer and then shows good retardation, LC alignment, and transmittance at the same time.  相似文献   

17.
Electron-hole excitation and relaxation in the bulk, at interfaces, and surfaces of solid state materials play a key role in a variety of physical and chemical phenomena that are important for surface photochemistry, particle-surface interactions, and device physics. Information on charge carrier relaxation in metals can be obtained through analysis of linewidths measured by photoemission and related techniques, which give an estimate of the upper limit for electron and hole relaxation; however, many factors can contribute to spectral broadening, thus it is difficult to extract specific information on electronic relaxation processes. With femtosecond lasers it is possible to probe directly in a time-resolved fashion the charge carrier dynamics in metals by a variety of linear and nonlinear optical techniques. Femtosecond time-resolved two-photon photoemission has attracted particularly strong interest because it incorporates many of the surface analytical capabilities of photoemission and inverse photoemission — the traditional probes for surface and bulk band structures of solid state materials — with time-resolution that is approaching the fundamental response of electrons to optical excitation. Advances in the direct measurements of electron-hole excitation, charge carrier relaxation, and dynamics of intrinsic and adsorbate induced surface states are reviewed. With femtosecond lasers it also is possible to probe a variety of coherent phenomena, and even to control the charge carrier dynamics in metals through the optical phase of the excitation light. Pioneering experiments in this new field also are discussed.  相似文献   

18.
Optical excitation of nanostructures is known to induce local heating, a phenomenon that has been intensely exploited for drug release, gene delivery, cancer thermotherapy, and energy harvesting. However, the effect is typically small requiring collective heating of a large concentration or aggregates of particles. Herein, we show that optical excitation of individual semiconducting single‐walled carbon nanotubes triggers strongly localized heating adequate to melt non‐covalently attached double‐stranded oligonucleotides in solution. In contrast to conventional thermal dehybridization, this optically triggered DNA melting occurs at a solution temperature that is 22 °C lower than the DNA melting temperature. This unexpectedly large localized optical heating effect provides important new insights to design selective optical nanoheaters at the single particle level.  相似文献   

19.
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.  相似文献   

20.
Single-wall carbon nanotubes (SWCNTs) exhibit resonant absorption localized in specific spectral regions. To expand the light spectrum that can be utilized by SWCNTs, we have encapsulated squarylium dye into SWCNTs and clarified its microscopic structure and photosensitizing function. X-ray diffraction and polarization-resolved optical absorption measurements revealed that the encapsulated dye molecules are located at an off center position inside the tubes and aligned to the nanotube axis. Efficient energy transfer from the encapsulated dye to SWCNTs was clearly observed in the photoluminescence spectra. Enhancement of transient absorption saturation in the S1 state of the semiconducting SWCNTs was detected after the photoexcitation of the encapsulated dye, which indicates that ultrafast (<190 fs) energy transfer occurred from the dye to the SWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号