共查询到19条相似文献,搜索用时 78 毫秒
1.
电动汽车用动力电池组SOC的神经网络估计 总被引:1,自引:0,他引:1
针对电动汽车用动力电池组的SOC受充放电率、放电历程和温度等因素的影响,传统方法很难建立准确的数学模型,对电池组SOC进行研究,在对动力电池组进行不同工况充放电试验的基础上。建立了电池组的神经网络仿真模型。并分别采用电流输入,电压和电压梯度输入进行了仿真,实现了对电池组SOC的估计。与实验结果对比,仿真结果与实验基本吻合,验证了该方法的正确性。 相似文献
2.
无迹卡尔曼滤波法(Unscented-Kalman Filter,UKF)在估计动力电池的剩余容量(State of Charge,SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,为此采用自适应无迹卡尔曼滤波法(Adaptive-UKF,AUKF)动态估计电动汽车动力电池的SOC.建立了适用于SOC估计的电池模型,辨识相应的电池模型的参数并进行验证,将AUKF应用到该模型,在未知干扰噪声环境下,在线估计电池的SOC.试验仿真结果表明:UKF算法的估计误差在-0.04~0.06之间跳动,而AUKF算法的估计误差平稳的保持在0.05以内,实时修正微小的模型误差带来的SOC估计误差. 相似文献
3.
针对由静态的电池模型参数而造成的状态估计累计误差、噪声统计特性的时变不确定性等实用化的问题,基于无迹卡尔曼滤波(unscented Kalman filter, UKF)框架设计了一种自适应UKF的电池状态联合估计算法.在无迹变换(unscented transform,UT)时,对量测方程进行准线性化处理,降低了循环迭代过程中的计算开销;利用带遗忘因子的Sage-Husa自适应估计方法对过程噪声的统计特性参数进行递推估计与修正,提高了UKF估计算法的自适应容错能力;实时跟踪滤波的收敛性,若呈发散趋势时,通过自适应衰减因子对误差协方差进行调整以抑制滤波发散,保证了滤波过程的数值稳定性;采用联合估计策略对一阶Thevenim电池欧姆内阻模型参数进行在线更新,以确保动态测试工况下电池模型的准确性,从而提高了电池荷电状态(state of charge,SOC)以及电池健康状态(state of health,SOH)的估计精度.实验与仿真结果验证了该电池状态联合估计算法的可行性与有效性. 相似文献
4.
为提高锂离子荷电状态(state of charge,SOC)及健康状态(state of health,SOH)的精度,提出改进双自适应扩展卡尔曼滤波(dual adaptive extended Kalman filter,DAEKF)算法。基于二阶RC模型,建立空间状态方程;选取电池容量作为SOH的表征量,在双扩展卡尔曼滤波算法基础上引入改进的Sage-Husa自适应算法,实现系统协方差矩阵的实时更新;为降低系统计算量,进一步加入多时间尺度理论进行优化。实验结果表明,提出的算法能较准确地估计锂电池的SOC与SOH,SOC的平均误差为0.58%,SOH最大估计误差为0.8%,该算法正确有效。 相似文献
5.
卡尔曼滤波法在估计动力电池的剩余容量(SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,笔者采用自适应卡尔曼滤波法来动态地估计电动汽车用磷酸铁锂动力电池的SOC。首先对电池模型进行了研究,建立了适用于SOC估计的电池模型,然后设计了相应的电池充放电实验检测到模型的参数,并进行了验证,最后将自适应卡尔曼滤波法应用到该模型,在未知干扰噪声环境下,在线估计电池的SOC。仿真结果表明:自适应卡尔曼滤波法能够实时修正微小的模型误差带来的SOC估计误差,估计精度高于卡尔曼滤波法,且自适应卡尔曼滤波法对初值误差具有修正作用。实车循环行驶实验表明算法适用于磷酸铁锂动力电池的SOC估计。 相似文献
6.
为能在线准确估算电动汽车动力电池的荷电状态 ( SOC) ,提出了一种基于强追踪扩展卡尔曼滤波 ( STEKF) 的锂离子电池的 SOC 估算方法,该滤波器引入了多重次优渐消因子; 以某型锂离子电池为研究对象,基于电池的外特性及相关机理,建立了电池的二阶 RC 等效电路模型,使用最小二乘法辨识模型参数,然后按照等效电路模型建立电池的 STEKF 非线性状态空间方程,最后在 ECE15 工况下进行仿真。结果表明, STEKF 估算电池 SOC 的误差保持在 2% 以内,该方法能准确估算电池的 SOC。 相似文献
7.
8.
锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元件的分数阶二阶RC模型,采用自适应遗传算法进行参数辨识;融合多新息理论和扩展卡尔曼滤波算法,提出基于多新息扩展卡尔曼滤波(MIEKF)的锂离子电池SOC估计算法,并利用试验数据验证该方法的有效性,为提高SOC估计精度和车载锂电池的循环使用寿命提供了新的方法途径和实践支撑。 相似文献
9.
为了提高锂离子电池SOC(state of charge)和SOH(state of health)的估计精度,采用自适应扩展卡尔曼粒子滤波(adaptive extended Kalman particle filter, AEKPF)算法估算SOC和SOH,该算法通过修正噪声可以解决运用EKF(extended Kalman filter)算法时的噪声误差累积问题,并且AEKF(adaptive extended Kalman filter)算法作为PF(particle filter)算法的建议分布用来实时更新粒子,可以改善单独采用PF算法时的粒子退化问题.为了提高SOC的估计精度,提出考虑电池的劣化特征,联合SOH实现对SOC的修正估计.在Matlab环境下的仿真结果表明:AEKPF算法与AEKF算法相比,可以得到更加准确的SOC和SOH估计值,而且AEKPF算法联合SOH可以有效提高SOC的估计精度,仿真绝对误差不超过±1%. 相似文献
10.
针对锂离子电池荷电状态(SOC)较难准确获取的问题,依据锂电池等效电路模型,建立起各参数与SOC的联系,利用脉冲放电的数据对模型进行参数辨识.通过Mat-lab/Simulink验证了模型的正确性和精确性.将扩展卡尔曼滤波算法(EKF)融合多新息理论,建立了多新息扩展卡尔曼滤波算法(MIEKF)估计电池SOC的方法,该方法通过对旧信息的重复使用提高了EKF的估计精度.在美国城市道路循环工况(UDDS)下分别采用EKF和MIEKF算法来估计锂电池SOC,两者估计的最大误差分别为0.0176、0.0087.实验数据表明MIEKF算法估计电池SOC更准确. 相似文献
11.
为提高锂电池荷电状态(SOC)的估算精度,提出一种改进粒子群优化(PSO)算法;对最小二乘支持向量机(LSSVM)的惩罚参数C和核函数参数σ进行寻优,建立基于改进PSO-LSSVM的锂电池SOC估算模型.对磷酸铁锂充放电实验数据进行仿真分析,结果表明:改进PSO-LSSVM模型的平均相对误差为2.96%,均方根误差为0.018,全局最大相对误差为4.79%;改进PSO-LSSVM模型明显提高锂电池SOC估算精度. 相似文献
12.
针对电动汽车锂电池荷电状态(State Of Charge,SOC)的精准估算,提出一种优化的径向基(Radial Basis Function,RBF)神经网络算法;通过粒子群(Particle Swarm Optimization,PSO)算法优化RBF神经网络的参数及结构,确定RBF神经网络中的基函数的宽度以及中心;根据锂电池的充、放电机理,将SOC的影响因子电压(U)、电流(I)、内阻(R)、温度(T)作为输入向量,在Matlab中进行仿真实验;实验表明方法能够实现准确、快速、便捷的锂电池的SOC估算,其预测结果和实际测量结果的误差在4%以下,符合SOC预测误差5%的技术指标要求,对于电动汽车锂电池SOC的估算有着一定的实际应用意义。 相似文献
13.
电池SOC的估算精度是影响电动汽车性能的重要因素之一.针对传统的卡尔曼滤波方法在滤波时,需要已知系统噪声统计特性这一问题,本文在采用RC等效电路模型,运用多元线性回归方法辨识得到电池模型参数后,提出了采用模糊自适应卡尔曼滤波算法来估算电池SOC.城市道路循环工况仿真对比结果表明,该算法相比传统卡尔曼滤波方法具有更高精度,且能够将误差保持在2%以内,较好地提高了SOC估算精度. 相似文献
14.
基于RC等效电路的动力电池SOC估计算法 总被引:1,自引:0,他引:1
精确的动力电池剩余电量(SOC)是混合动力系统进行动力分配的重要依据,也是整车控制和降低使用成本的关键.因而,采用简化的RC电池等效电路,建立了电池的动态充、放电模型,把该模型转化为状态空间表达式.基于不同温度下的镍氢动力电池开路电压,通过混合脉冲功率性能(HPPC)测试方法测量,得到动力电池的动态工作内阻.根据电池的动态工作电流,在线实时估算动力电池的SOC.仿真及实验室测试结果表明,该方法的估算误差小于8%,验证了该SOC估算方法的有效性. 相似文献
15.
电池的荷电状态和健康状态是衡量电池续航和寿命的重要指标,为解决电池参数的时变性问题,提高电池
SOC(State of Charge)估算精度,减少硬件计算量,提出一种多时间尺度在线参数辨识双扩展卡尔曼滤波联合算法。
以 18650 三元锂电池为研究对象,采用基于二阶 RC 等效电路模型的多时间尺度 DEKF 算法,针对电池参数的慢变
特性和状态的快变特性进行双时间尺度在线参数辨识和 SOC 估算;通过联邦城市驾驶计划 (FUDS) 测试验证,得
出多时间尺度 DEKF 算法和传统离线辨识 EKF 算法对 SOC 估计的平均绝对误差分别为 0. 97%和 2. 46%,均方根
误差为 1. 19%和 2. 69%,容量估计值对参考值最大误差仅为 0. 007 72 Ah;实验结果表明:所提出的多时间尺度
DEKF 算法,具有更好的鲁棒性和 SOC 估算精度并能实时反应 SOH 变化趋势。 相似文献
16.
《西安交通大学学报》2021,(1)
针对单一的等效电路模型难以准确描述全时段的锂离子电池、估计电池荷电状态(SOC)准确度低的问题,提出采用多模模型的锂离子电池荷电状态联合估计算法。利用电化学阻抗谱分析不同SOC下锂离子电池的阻抗分布,并以此构建等效电路模型来描述整个充放电过程中的锂离子电池,得到一种基于变阶RC模型的多模模型。利用贝叶斯定阶准则综合模型的准确度和实用性来确定具体阶数,采用带有遗忘因子的递推最小二乘法对模型参数进行在线辨识,利用扩展卡尔曼滤波算法(EKF)求得锂离子电池的实时SOC。在恒流工况以及动态应力测试工况下,与传统基于一阶RC模型和二阶RC模型的EKF算法进行了多组实验对比。结果表明:采用多模模型的联合算法在不同工况下估计的SOC精度提高了30%以上,并均可在两个迭代周期内追踪到准确值。 相似文献
17.
AR模型功率谱估计常用算法的性能比较 总被引:2,自引:0,他引:2
陈海英 《漳州师范学院学报》2009,22(1)
功率谱估计是分析随机信号的一种重要方法.通过分析AR模型功率谱估计,介绍AR模型参数提取的L-D算法、Burg算法和Marple算法,并利用计算机仿真比较三者的性能. 相似文献
18.
信号噪声干扰、电池模型对温度与老化的适应性及单体不一致性等因素直接影响电池组电荷状态(State of Charge,SOC)估算精度.为实现锂离子电池组SOC的准确估计,提出了一种使用交互多模型(Interacting Multiple Model,IMM)和自适应电池状态估计器(Adaptive Battery State Estimator,ABSE)相结合的估算方法.首先,基于电池组综合特性建立电池交互模型,通过ABSE对单体SOC进行估算并嵌入IMM模型中.然后,计算各模型的信息分配因子,并根据信息分配因子对各模型的SOC进行概率融合,得到精度较高的电池组SOC.最后,在不同温度的组合工况下,评估该算法的鲁棒性和普适性.实验结果表明,该方法适用于系统输入信号存在噪声、全气候工况和单体间存在不一致性的环境,在有效充放电期间平均误差小于2%. 相似文献
19.
基于模型几何特征的光固化快速原型制作时间预计算法 总被引:3,自引:0,他引:3
提出了一种基于模型几何特征的光固化快速原型制作的时间估计算法,利用体积、有效表面积等参数及经过统计分析算是的支撑结构因素,来地估算模型的制作时间,克服了传统方法必须进行分层、加支撑和获取最终加工文件才能进行时间计算的缺点。经实践证明,该方法简单、有效、精度较高及应用性强,对实现模型制作的精确报价有较高的实用价值。 相似文献