首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexation of 1,4,7-tris(dihydroxyphosphorylmethyl)-1,4,7-triazacyclononane with metal ions, differing in both charge and ionic radius, was studied. This complexing agent is selective relative to cations of a given ionic radius. The stability of the complex increases with increasing charge and polarizability of the cation.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 917–919, April, 1990.  相似文献   

2.
The ligand 1,4,7-tris(acetophenoneoxime)-1,4,7-triazacyclononane (H(3)L) has been synthesized and its coordination properties toward Cu(II), Ni(II), Co(II), and Mn(II) in the presence of air have been investigated. Copper(II) yields a mononuclear complex, [Cu(H(2)L)](ClO(4)) (1), cobalt(II) and manganese(II) ions yield mixed-valence Co(III)(2)Co(II) (2a) and Mn(II)(2)Mn(III) (4) complexes, whereas nickel(II) produces a tetranuclear [Ni(4)(HL)(3)](2+) (3) complex. The complexes have been structurally, magnetochemically, and spectroscopically characterized. Complex 3, a planar trigonal-shaped tetranuclear Ni(II) species, exhibits irregular spin-ladder. Variable-temperature (2-290 K) magnetic susceptibility analysis of 3 demonstrates antiferromagnetic exchange interactions (J = -13.4 cm(-1)) between the neighboring Ni(II) ions, which lead to the ground-state S(t) = 2.0 owing to the topology of the spin-carriers in 3. A bulk ferromaganetic interaction (J = +2 cm(-1)) is prevailing between the neighboring high-spin Mn(II) and high-spin Mn(III) ions leading to a ground state of S(t) = 7.0 for 4. The large ground-state spin value of S(t) = 7.0 has been confirmed by magnetization measurements at applied magnetic fields of 1, 4 and 7 T. A bridging monomethyl carbonato ligand formation occurs through an efficient CO(2) uptake from air in methanolic solutions containing a base in the case of complex 4.  相似文献   

3.
4.
5.
Summary [(R)-2-Methyl-1,4,7-triazacyclononane][1,1,1-tris(aminomethyl)ethane]cobalt(III) has been prepared and separated into two isomers which show weak Cotton effects in the1A11T1 region (d-electron transition) compared with that of bis[(R)-2-methyl-1,4,7-triazacyclononane]cobalt(III). The effect is comparable to that of tetraammine[(R)-1,2-diamino propane]cobalt(III). The circular dichroism spectra of the mono complex change markedly upon addition of sodium sulphate. The chelate rings are more flexible in the mono than in the bis complex. Some other related mono[(R)-2-methyl 1,4,7-triazacyclononane]cobalt(III) and [(R)-2-methyl-1,4,7 triazacyclononane][1,1,1-tris(aminomethyl)ethaneI nickel (II) complexes have also been prepared and characterized.  相似文献   

6.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

7.
8.
Li  Qing-Xiang  Zhang  Wen  Luo  Qin-Hui  Li  Yi-Zhi  Wang  Zhi-lin 《Transition Metal Chemistry》2003,28(6):682-686
Two novel complexes [ML]·(ClO4)2·EtOH·xH2O M = CuII, x = 3; M = NiII, x = 2; L = 1-R-4,7-bis(benzimidazole-2-yl-methyl)-1,4,7-triazacyclononane, [R = 1-(benzimidazole-2-yl-methyl)benzimidazole-2-yl-methy], were prepared by a one-pot method using the 1,4,7-triazacyclononane ligand (tacn) and 2-chloromethylbenzimidazole as starting materials. The ES-MS and u.v. spectra of the complexes indicate that they are very stable thermodynamically and kinetically in aqueous solution. The crystal structure of the CuII complex shows that the CuII centre is octahedrally coordinated by six nitrogen atoms of three benzimidazoles and tacn.  相似文献   

9.
Four new d-block metal complexes formulated as [NiII(H3thptacn)]Cl2·H2O (1), [MnIV(thptacn)]ClO4 (2), [CuII3(Hthptacn)2](ClO4)2 (3), and [CdII2(H3thptacn)2Cl2][B(C6H5)4]2 (4) were obtained from the macrocyclic ligand 1,4,7-tris(3-hydroxypropyl)-1,4,7-triazacyclononane (H3thptacn) either through solvent diffusion or by evaporation of their solutions. These complexes were characterized by single crystal X-ray structural determination, elemental analysis, and routine spectroscopic methods. Complexes 1 and 2 exhibit similar mononuclear structures with the metal centers being surrounded by both the backbone nitrogen atoms and the pendant coordinating alcohol/alkoxide groups. Complex 3 is a linear trinuclear cluster, where three Cu(II) centers are combined together by the bridging alkoxide groups in a centro-symmetric pattern. Two chloride groups join two Cd(II) atoms each chelated by one triply protonated ligand H3thptacn to afford dinuclear compound 4 with a symmetry center. When coordinating to different d-block metals, the macrocyclic ligand exhibits four types of binding modes with various dissociation status on its pendant alcohol groups and different numbers of these pendant groups participating in coordination. The magnetic measurements revealed significant zero-field splitting for mononuclear Ni(II) and Mn(IV) complexes. A moderate antiferromagnetic interaction between the neighboring Cu(II) centers governs the magnetic properties of 3 with J = ?166(3) cm?1.  相似文献   

10.
A new water-soluble copper(II) complex, Cu(TACNA)Br?·?0.375H2O (1) [TACNA?=?1,4,7-triazacyclononane-N-acetate], has been synthesized to serve as artificial nucleases. The X-ray crystal structure of 1 indicates that one bromide and an oxygen from acetate pendant coordinate to copper(II) in addition to the nitrogen atoms in the TACN macrocycle, resulting in a five-coordinate complex with square-pyramidal geometry. The interaction of 1 with calf thymus DNA (ct-DNA) has been investigated by UV absorption and fluorescence spectroscopies, and the mode of ct-DNA binding for 1 has been proposed. In the absence of external agents, supercoiled plasmid DNA cleavage by 1 was performed under aerobic condition; the influences on DNA cleavage of different complex concentrations and reaction times were also studied. The cleavage of plasmid DNA likely involves oxidative mechanism.  相似文献   

11.
12.
Oxone (peroxysulphate) very efficiently oxidizes benzene to p-quinone (TON 1140) and alkanes to the corresponding alcohols and ketones (aldehydes) in aqueous acetonitrile 50 °C if catalytic amounts of complex [Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane) and oxalic acid are present in the solution. In contrast to the similar reaction with H2O2, the alkane oxidation with Oxone does not afford the corresponding alkyl hydroperoxides. Phenol was quantitatively oxidized to a mixture of p-quinone and pyrocatechol (9:1 ratio). Cyclohexanol gave cyclohexanone (TON 400). The proposed mechanism includes the formation of an oxidizing species containing the Mn(V)O fragment. A kinetic study demonstrated that an adduct of [Mn2L2O3]2+ and oxalic acid is formed in the initial stage. This adduct reacts with Oxone to generate the oxidizing species.  相似文献   

13.
A mechanistic study of organosulfide oxidation by H2O2, using a dinuclear manganese complex as the catalyst, has revealed an unusual switch in the philicity of the oxidant for the first and the second oxygen transfer steps; this switch has been exploited to tune selectivity for each of the products.  相似文献   

14.
The reaction of [Mn(dmptacn)OH(2)](2+) and [Ni(dmptacn)OH(2)](2+) (dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) with each cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core and reduction of Fe(III) to Fe(II). In [[Mn(dmptacn)CN](6)Fe][ClO(4)](8) x 5H(2)O (1) and [[Ni(dmptacn)CN](6)Fe][ClO(4)](8) x 7H(2)O (2), ferrocyanide is encapsulated by either six Mn(II) or Ni(II) dmptacn moieties. These same products are obtained when ferrocyanide salts are used in the synthesis instead of ferricyanide. A binuclear complex, [[Mn(dmptacn)](2)CN][ClO(4)](3) (3), has also been formed from KCN and [Mn(dmptacn)OH(2)](2+). For both Mn(II) and Ni(II), the use of the pentadentate dmptacn ligand facilitates the formation of discrete cations in preference to networks or polymeric structures. 1 crystallizes in the trigonal space group R3 macro (No. 148) with a = 30.073(3) A, c = 13.303(4) A, and Z = 3 and is composed of heptanuclear [[Mn(dmptacn)CN](6)Fe](8+) cations whose charge is balanced by perchlorate counteranions. Weak H-bonding interactions between neighboring heptanuclear cations and some perchlorate counterions generate an infinite 1D chain of alternating [[Mn(dmptacn)CN](6)Fe](8+) and ClO(4)(-) ions running along the c-axis. Complex 3 crystallizes in the orthorhombic space group Pbcn (No. 60) with a = 16.225(3) A, b = 16.320(2) A, c = 18.052(3) A, and Z = 8 and is composed of binuclear [[Mn(dmptacn)](2)CN](3+) cations in which the cyano-bridged Mn(II) centers are in a distorted trigonal prismatic geometry. Variable temperature magnetic susceptibility measurements have revealed the presence of a weak ferromagnetic interaction between the paramagnetic Mn(II) centers in 1, mediated either by the -NC-Fe-CN- bridging units or by Mn-NH...ClO(4-)...NH-Mn intercluster pathways.  相似文献   

15.
Three new complexes [CuL(N3)2] (1), [CuL(SCN)2] (2), and [CoL(SCN)3] (3) (L?=?1,4,7-tribenzyl-1,4,7-triazacyclononane) have been synthesized and structurally characterized. Complex 1 crystallizes in monoclinic space group P2(1)/n with unit cell parameters a?=?14.105(7), b?=?8.999(5), c?=?21.603(11)?Å, β?=?100.470(7)°. While 2 crystallizes in triclinic space group P-1 with unit cell parameters a?=?9.6380(16), b?=?10.6993(18), c?=?15.798(3)?Å, α?=?106.636(3), γ?=?116.478(3)°. Complex 3 crystallizes in trigonal space group P–3c1 with unit cell parameters a?=?14.744(3), b?=?14.744(3), c?=?16.098(4)?Å, γ?=?120°. Elemental analysis, IR, UV-vis spectra of complexes 13 and ESR spectra of complexes 12 were also determined.  相似文献   

16.
17.
The gas-phase reactions of a series of (di)manganese carbonyl positive ions with 1,4,7-trimethyl-1,4,7-triazacyclononane (Me(3)TACN) have been examined with the aid of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The monomanganese carbonyl ions, [Mn(CO)(n)](+) (n = 2-5), react predominantly by ligand exchange and to a minor extent by electron transfer with the formation of the radical cation of Me(3)TACN. For the [Mn(CO)(n)](+) (n = 2-4) ions, the ligand exchange results in the exclusive formation of a [Mn(Me(3)TACN)](+) complex, whereas small amounts of [Mn(CO)(Me(3)TACN)](+) ions are also generated in the reactions of the [Mn(CO)(5)](+) ion. The [Mn(2)(CO)(n)](+) ions (n = 2, 4 and 5) react also by competing electron transfer and ligand exchange. The reaction of the [Mn(2)(CO)(2)](+) and [Mn(2)(CO)(4)](+) ions is associated with cleavage of the Mn--Mn bond as evidenced by the pronounced formation of [Mn(Me(3)TACN)](+) ions. For [Mn(2)(CO)(5)](+), the ligand exchange leads mainly to the formation of [Mn(2)(CO)(n)(Me(3)TACN)](+) (n = 1-3) ions. These primary product ions react subsequently by the incorporation of a second Me(3)TACN molecule to afford [Mn(2)(CO)(Me(3)TACN)(2)](+) and [Mn(2)(CO)(2)(Me(3)TACN)(2)](+) ions. Both of these latter species incorporate an oxygen molecule with formation of ions with the assigned composition of [Mn(2)(O(2))(CO)(Me(3)TACN)(2)](+) and [Mn(2)(O(2))(CO)(2)(Me(3)TACN)(2)](+).  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号