首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three pairs of mononuclear geometrical isomers containing the ligand 3,5-bis(2-pyridyl)pyrazole (Hbpp) of general formula in- and out-[RuII(Hbpp)(trpy)X](n+) (trpy=2,2':6',2' '-terpyridine; X=Cl, n=1, 2a,b; X=H2O, n=2, 3a,b; X=py (pyridine), n=2, 4a,b) have been prepared through two different synthetic routes, isolated, and structurally characterized. The solid state structural characterization was performed by X-ray diffraction analysis of four complexes: 2a-4a and 4b. The structural characterization in solution was performed by means of 1D and 2D NMR spectroscopy for complexes 2a,b and 4a,b and coincides with the structures found in the solid state. All complexes were also spectroscopically characterized by UV-vis which also allowed us to carry out spectrophotometric acid-base titrations. Thus, a number of species were spectroscopically characterized with the same oxidation state but with a different degree of protonation. As an example, for 3a three pKa values were obtained: pKa1(RuII)=2.13, pKa2(RuII)=6.88, and pKa3(RuII)=11.09. The redox properties were also studied, giving in all cases a number of electron transfers coupled to proton transfers. The pH dependency of the redox potentials allowed us to calculate the pKa of the complexes in the Ru(III) oxidation state. For complex 3a, these were found to be pKa1(RuIII)=0.01, pKa2(RuIII)=2.78, and pKa3(RuIII)=5.43. The oxidation state Ru(IV) was only reached from the Ru-OH2 type of complexes 3a or 3b. It has also been shown that the RuIV=O species derived from 3a is capable of electrocatalytically oxidizing benzyl alcohol with a second-order rate constant of kcat=17.1 M(-1) s(-1).  相似文献   

2.
Four novel dinuclear RuII compounds and, for comparison purposes, two corresponding mononuclear complexes containing the PHEHAT or TPAC ligand (PHEHAT=1,10-phenanthrolino[5,6-b]-1,4,5,8,9,12-hexaazatriphenylene and TPAC=tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' ',3' '-j]acridine) have been synthesized and characterized. Conclusions on the effects of dinucleation of these two bridging ligands can be drawn only for the compounds for which the results demonstrate that the bridging ligand is involved in the first electrochemical reduction and lowest emission energy. The behavior of these complexes, which is not always predictable, is discussed, and the differences are highlighted in this work. Interestingly, all of the compounds are luminescent except one dinuclear species, [(phen)2Ru-mu-PHEHAT-Ru(TAP)2]4+, which does not luminesce in MeCN and BuCN at room temperature.  相似文献   

3.
The synthesis of a series of ReI, RuII, and OsII complexes that contain rigid polyphosphine/cumulene spacers is reported here. These cumulenic ligands, namely, 1,1',3,3'-tetrakis(diphenylphosphino)allene (C3P4) and 1,1',4,4'-tetrakis(diphenylphosphino)cumulene (C4P4), utilize diphenylphosphino linkage components to coordinate to the metal-polypyridyl or metal-carbonyl units. Characterization of all mono-, homo-, and heterobimetallic complexes is achieved using 31P(1H) NMR, IR, and fast atom bombardment mass spectroscopy (FAB/MS) and elemental analysis. The two ReI homobimetallic complexes were also characterized by single-crystal X-ray structure determination, which provided the structural evidence of a 90 degrees rotation between the C3 and C4 adducts causing a change in the electrochemical behavior. The ground-state electronic absorption and redox interactions, along with the excited-state photophysical characteristics, are also explored. Electrochemical studies showed that an increase in the carbon chain length resulted in a greater amount of sigma-donation from the ligand to the metal centers, as well as a greater amount of electronic communication between the metal termini of the bimetallic species. The electronic absorption and emission spectra of the new complexes were also determined and characterized. The lifetimes of the excited-state luminescence of the ReI mono- and homobimetallic complexes were found to be an order of magnitude shorter than the lifetimes of the heterobimetallic complexes containing the RuII and OsII moieties. Excited-state energy transfer was observed from the higher MLCT excited state of the ReI centers to the lower energy MLCT excited state of the RuII and OsII centers on the following basis: no ReI-based emission was detected in the steady-state emission measurements, the time-resolved decay traces were fitted to only single-exponential decays, and the quantum yields were identical for each compound at two different excitation wavelengths where different percentages of the metal-based chromophores were excited.  相似文献   

4.
A range of 1,3-di(metallocenyl)allylium salts [Mc(CH)(3)Mc'](+)[X](-) [Mc, Mc' = ferrocenyl (Fc), 2,3,4,5,1',2',3',4'-octamethylferrocen-1-yl (Fc' '), ruthenocenyl (Rc); X = BF(4), PF(6)] was synthesized by reaction of (2-lithiovinyl)metallocenes with formylmetallocenes, followed by treatment of the resulting alcohols with HX. Two salts with X = BAr'(4) [Ar' = 3,5-(CF(3))(2)C(6)H(3)] were synthesized by anion metathesis from the corresponding PF(6) salts. The crystal structure of [Fc' '(CH)(3)Fc' '](+)[PF(6)](-) contains symmetrical termethine cations, while the same appears to be true in the disordered structure of [Fc(CH)(3)Fc](+)[PF(6)](-). The formally unsymmetrical cation in [Fc(CH)(3)Fc' '](+)[BF(4)](-) is only slightly unsymmetrical with little bond-length alternation in the allylium bridge. In contrast, the crystal structures of [Rc(CH)(3)Rc](+)[PF(6)](-) and [Rc(CH)(3)Rc](+)[BAr'(4)](-) both contain a bond-alternated "Peierls-distorted" cation, which can be considered as a ruthenocene bridged to a [(eta(6)-fulvene)(eta(5)-cyclopentadienyl)ruthenium] cation by a vinylene moiety. The strong similarity between solid-state and solution infrared and Raman spectra of [BF(4)](-), [PF(6)](-), and [BAr'(4)](-) salts of [Rc(CH)(3)Rc](+) indicates that the C-C stretching constant in the allylium chain and, therefore, the structure, of this ion are largely independent of the local environment, suggesting that the unsymmetrical structures observed in the crystal structures are not simply an artifact of packing. Differences in the solvatochromism of [Rc(CH)(3)Rc](+) and [Fc(CH)(3)Fc](+) also suggest a localized structure for the former cation in solution. Electrochemistry, UV-visible-NIR spectroscopy, and DF calculations give insight into the electronic structure of the metallocene-terminated allylium cations. Using an analogy between polymethines and mixed-valence compounds, the difference between the behaviors of [Fc(CH)(3)Fc](+) and [Rc(CH)(3)Rc](+) is attributed to larger reorganization energy associated with the geometry differences between metallocene and [(eta(6)-fulvene)(eta(5)-cyclopentadienyl)metal] structures in the ruthenium case.  相似文献   

5.
Wong KM  Tang WS  Lu XX  Zhu N  Yam VW 《Inorganic chemistry》2005,44(5):1492-1498
A series of platinum(II) terpyridyl alkynyl complexes that have been derivatized with basic amino functionalities, [Pt(tpy)(C[triple bond]C-C6H4-NR2-4]X (X = OTf-, R = CH3 1, R = CH2CH2OCH3 2, R = H 3; X = Cl-, R = CH3 4, R = CH2CH2OCH3 5, R = H 6) (tpy = 2,2':6',2' '-terpyridine), have been synthesized and characterized. Their photophysical responses at various acid concentrations were studied. The abilities of the complexes to function as colorimetric and luminescence pH sensors were demonstrated with dramatic color changes and luminescence enhancement upon introduction of acid.  相似文献   

6.
The dinuclear complex [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)2-3,5]22-) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)2-2,6]-) followed by a reaction with 2,2':6',2' '-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 are compared with those of the closely related [(tpy)RuII(NCN-NCN)RuII(tpy)](PF6)2 (NCN-NCN = [C6H2(CH2NMe2)2-3,5]22-) obtained by two-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4. The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4 and one-electron oxidation of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 yielded the mixed-valence species [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ and [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+, respectively. The comproportionation equilibrium constants Kc (900 and 748 for [(tpy)RuIII(NCN-NCN)RuIII(tpy)]4+ and [(tpy)RuII(PCP-PCP)RuII(tpy)]2+, respectively) determined from cyclic voltammetric data reveal comparable stability of the [RuIII-RuII] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+ and [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups.  相似文献   

7.
The enantiomerically pure chiral tris-chelating ligand (+)-(7S,10R)-L(L) comprising three 4,5-pinenobipyridine subunits connected through a mesityl spacer has been synthesized. Complexes of L with RuII and FeII have been prepared and characterised. NMR spectroscopy indicates that only one diastereoisomer is formed, and the CD spectra show that the complexes have the [capital Lambda] configuration on the metal centre. The X-ray crystal structure of the iron complex shows that in the octahedral complex, the ligand L coils around the metal and confirms the absolute configuration. The RuII and FeII compounds were also characterised by mass spectrometry, electronic absorption, and, in the case of Ru(II), fluorescence spectroscopy. The photostability of the ruthenium compound was checked by photochemical experiments.  相似文献   

8.
A series of RuII or FeII trischelate complex salts containing N-methyl/aryl-2,2':4,4' ':4',4' '-quaterpyridinium ligands that has previously been subjected to quadratic nonlinear optical studies (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 13399) has now been investigated for two-photon absorbing behavior. Z-scan measurements using a 750 nm laser afford reasonably large two-photon absorption (2PA) cross-sections sigma2 of ca. 62-180 GM for the RuII complexes, but only very weak 2PA is observed for the FeII compounds. The excited-state and 2PA properties of the representative chromophore [RuII(Me2Qpy2+)3]8+ (Me2Qpy2+=N' ',N' '-dimethyl-2,2':4,4' ':4',4' '-quaterpyridinium) have also been investigated by using semiempirical intermediate neglect of differential overlap/multireference-determinant single and double configuration interaction computations with the optimized geometry obtained via density functional theory. The calculated sigma2 value of ca. 624 GM at 1.70 eV for this metal-to-ligand charge-transfer chromophore is about 10 times larger than that obtained from the Z-scan studies.  相似文献   

9.
By means of Delta-SCF and time-dependent density functional theory (DFT) calculations on [Ru(LL)3]2+ (LL = bpy = 2,2'-bipyridyl or bpz = 2,2' -bipyrazyl) complexes, we have found that emission of these two complexes could originate from two metal-to-ligand charge-transfer triplet states (3MLCT) that are quasi-degenerate and whose symmetries are D3 and C2. These two states are true minima. Calculated absorption and emission energies are in good agreement with experiment; the largest error is 0.14 eV, which is about the expected accuracy of the DFT calculations. For the first time, an optimized geometry for the metal-centered (MC) state is proposed for both of these complexes, and their energies are found to be almost degenerate with their corresponding 3MLCT states. These [RuII(LL)(eta1-LL)2]2+ MC states have two vacant coordination sites on the metal, so they may react readily with their environment. If these MC states are able to de-excite by luminescence, the associated transition (ca. 1 eV) is found to be quite different from those of the 3MLCT states (ca. 2 eV).  相似文献   

10.
A family of tridendate ligands 1 a-e, based on the 2-aryl-4,6-di(2-pyridyl)-s-triazine motif, was prepared along with their hetero- and homoleptic Ru(II) complexes 2 a-e ([Ru(tpy)(1 a-e)](2+); tpy=2,2':6',2"-terpyridine) and 3 a-e ([(Ru(1 a-e)(2)](2+)), respectively. The ligands and their complexes were characterized by (1)H NMR spectroscopy, ES-MS, and elemental analysis. Single-crystal X-ray analysis of 2 a and 2 e demonstrated that the triazine core is nearly coplanar with the non-coordinating ring, with dihedral angles of 1.2 and 18.6 degrees, respectively. The redox behavior and electronic absorption and luminescence properties (both at room temperature in liquid acetonitrile and at 77 K in butyronitrile rigid matrix) were investigated. Each species undergoes one oxidation process centered on the metal ion, and several (three for 2 a-e and four for 3 a-e) reduction processes centered on the ligand orbitals. All compounds exhibit intense absorption bands in the UV region, assigned to spin-allowed ligand-centered (LC) transitions, and moderately intense spin-allowed metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region. The compounds exhibit relatively intense emissions, originating from triplet MLCT levels, both at 77 K and at room temperature. The incorporation of triazine rings and the near planarity of the noncoordinating ring increase the luminescence lifetimes of the complexes by lowering the energy of the (3)MLCT state and creating a large energy gap to the dd state.  相似文献   

11.
Ruthenium(II) heptacoordinate complexes containing the pentadentate SNNNS chelating ligand 2,6–diacetylpyridine bis(4–(p-tolyl)thiosemicarbazone) (L1H2) have been prepared. The compounds were of the type Ru(L1H2)X2 [X=Cl (1);Br (2); SCN (3)],[Ru(L1H2)- (Y)Cl]Cl [Y=imidazole (4); pyridine-N-oxide (5)] and [Ru(L1H2)(PPh3)X]Y, [X=Cl (6), (7);Br (8); Y=ClO4/ PF6]. The complexes were characterised by i.r., u.v.–vis. and n.m.r. spectroscopy and their electrochemical behaviour was examined by cyclic voltammetry. They exhibit a reversible to quasi-reversible RuII/RuIII couple in MeCN solution at a glassy carbon working electrode using an Ag/AgCl electrode as the reference. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Three new rigid bridging ligands for metal complexation (7=bmb, 8=bqb and 11=btb) were prepared from a rigid triptycene spacer connected to two bipyridine ligands using a Horner–Emmons type reaction. The triptycene spacer is substituted by methoxy groups in the case of bmb and in the case of bqb by a benzoquinone substituent. The corresponding metal complexes (ruthenium and/or osmium) were synthesised and the different luminescence behaviour was tested. They show great potential for the investigation of intramolecular electron and energy transfer reactions. The dinuclear metal complex Ru---bqb---Os is an interesting system in which the bridging ligand bqb acts as a redox switch, able to tune the conductivity for energy or electrons across the bridge.  相似文献   

13.
The complexes of general formulas [RuII(terpy)(4-CO2H-4'-Mebpy)(X)]n+ (X = NO (n = 3) and NO2 (n = 1); 1, 2) and [RuII(terpy)(4-COGHK-4'-Mebpy)(X)] (X = NO (n = 3) and NO2 (n = 1); 3, 4) were synthesized and characterized. The complex [RuII(terpy)(4-CO2-4'-Mebpy)(NO2)]_7.5H2O has also been characterized by X-ray crystallographic studies. It crystallizes in the triclinic system: a = 9.4982(1) A, b = 13.1330(1) A, c = 14.2498(2) A; alpha = 110.5870(6) x bc, beta = 98.4048(5) x bc, gamma = 106.4353(5), P1, Z = 2. The crystal structure reveals an extended hydrogen-bonding network. Two water molecules form strong hydrogen bonds with the nitro and the carboxylic oxygen atoms of two separate units of the complex, resulting in a dimeric unit. The dimers are bridged by a (H2O)15 cluster, consisting of two cyclo-(H2O)6 species, while an exo-H2O(8) connects them. Two more exo-H2O molecules are joined together and connect the cyclo-(H2O)6 units with the H2O(1) of the dimeric unit. It was found that complexes 1 and 3 can be transformed into their nitro derivatives in aqueous media at neutral pH. Photorelease of NO in dry MeCN solutions was observed for complexes 1 and 3. Also, complex 2 partially releases (NO2)- in MeCN upon visible light irradiation. Complex 2 interacts with short fragments (70-300 bp) of calf thymus DNA shortening slightly the apparent polynucleotide length, while the conjugation of the peptide GHK to it (2) affects its DNA-binding mode. The peptide moiety of complex 4 was found to interact with the DNA helix in a synergistic way with the whole complex. Preliminary results of photocleavage of DNA by complex 2 are also reported.  相似文献   

14.
A series of three ligands designed for the formation of water-soluble luminescent lanthanide complexes is described. All ligands are based on a 6'-carboxy-2,2':6',2'-terpyridine framework linked via a methylene bridge to n-butylamine. The second negatively charged arm consists of a 6-carboxy-2-methylenepyridine for L1, a 6'-carboxy-6-methylene-2,2'-bipyridine for L2, and a 6'-carboxy-6-methylene-2,2':6',2'-terpyridine for L3. The photophysical properties of the Eu and Tb complexes were studied in aqueous solutions by means of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy. Luminescence excited-state lifetimes were recorded and led to the determination of two water molecules in the first coordination sphere. The europium complexes were characterized by means of (1)H NMR spectroscopy in D 2O and DFT calculations performed at the B3LYP level both in vacuo and in aqueous solution. Finally, the influence of different phosphorylated anions such as HPO 4 (2-), ATP (4-), ADP (3-), and AMP (2-) on the luminescence properties of the [Eu L X (H 2O) 2] (+) complexes ( X = 1-3) was investigated in buffered aqueous solutions (0.01 M TRIS, pH 7.0), showing a significant interaction of ATP (4-) with [Eu( L2)(H 2O) 2] (+). The coordination of anions was understood in terms of partial decomplexation of one arm of the ligands and water displacement, with formation of ternary species, and it was rationalized on the basis of the structural models of the complexes obtained from DFT calculations.  相似文献   

15.
A series of mono-, di-, and tetranuclear homo/heterometallic complexes of Ru(II) and Os(II) based on the bridging ligand dppz(11-11')dppz (where dppz = dipyrido[3,2-a:2',3'-c]phenazine) (BL) have been synthesized and characterized. This bridging ligand is a long rigid rod with only one rotational degree of freedom and provides complete conjugation between the chromophores. The complexes synthesized are of general formula [(bpy)(2)Ru-BL](2+), [(phen)(2)/(bpy)(2)M-BL-M(bpy)(2)/(phen)(2)](4+) (M = Ru(II) and Os(II)), [(bpy)(2)Ru-BL-Os(bpy)(2)](4+), and [((bpy)(2)Ru-BL)(3)M](8+). Detailed (1)H NMR studies of these complexes revealed that each chiral center does not influence its neighbor because of the long distance between the metal centers and the superimposed resonances of the diastereoisomers, which allowed the unambiguous assignment of the signals, particularly for homonuclear complexes. Concentration-dependent (1)H NMR studies show molecular aggregation of the mono- and dinuclear complexes in solution by pi-pi stacking. Electrospray mass spectrometry data are consistent with dimerization of mono- and dinuclear complexes in solution. Electrochemical studies show oxidations of Ru(II) and Os(II) in the potential ranges +1.38 to +1.40 and +0.92 to +1.01 V, respectively. The bridging ligand exhibits two one-electron reductions, and it appears that the added electrons are localized on the phenazene moieties of the spacer. All of these complexes show strong metal-to-ligand charge-transfer (MLCT) absorption and (3)MLCT luminescence at room temperature. Quantum yields have been calculated, and the emission lifetimes of all complexes have been measured by laser flash photolysis experiments. The luminescence intensity and lifetime data suggest that the emission due to the Ru center of the heteronuclear complexes is strongly quenched (>90%) compared to that of the corresponding model complexes. This quenching is attributed to intramolecular energy transfer from the Ru(II) center to the Os(II) center (k = (3-5) x 10(7) s(-1)) across the bridging ligand.  相似文献   

16.
A series of ruthenium(II) complexes possessing ligands with an extended pi system were synthesized and characterized. The complexes are derived from [Ru(bpy)3](2+) (1, bpy = 2,2'-bipyridine) and include [Ru(bpy)2(tpphz)](2+) (2, tpphz = tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine), [Ru(bpy)2(dppx)](2+) (3, dppx = 7,8-dimethyldipyrido[3,2-a:2',3'-c]phenazine), [Ru(bpy)2(dppm2)](2+) (4, dppm2 = 6-methyldipyrido[3,2-a:2',3'-c]phenazine), and [Ru(bpy)2(dppp2)](2+) (5, dppp2 = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline). The excited-state properties of these complexes, including their DNA "light-switch" behavior, were compared to those of [Ru(bpy)2(dppz)](2+) (6, dppz = dipyrido[3,2-a:2',3'-c]phenazine). Whereas 2, 3, and 4 can be classified as DNA light-switch complexes, 5 exhibits negligible luminescence enhancement in the presence of DNA. Because relative viscosity experiments show that 2-6 bind to DNA by intercalation, their electronic absorption and emission spectra, electrochemistry, and temperature dependence of the luminescence were used to explain the observed differences. The small energy gap between the lowest-lying dark excited state and the bright state in 2-4 and 6 is related to the ability of these complexes to exhibit DNA light-switch behavior, whereas the large energy gap in 5 precludes the emission enhancement in the presence of DNA. The effect of the energy gap among low-lying states on the photophysical properties of 1-6 is discussed. In addition, DFT and TD-DFT calculations support the conclusions from the experiments.  相似文献   

17.
18.
Complexes of the type [Au2(micro-PP3)2]X2 [X=Cl (), Br (), I ()], [Ag2(micro-PP3)2](NO3)2 (), Ag(PP3)Cl (), M3(micro-PP3)X3 [M=Au, X=Cl (), Br (), I (); M=Ag, X=NO3 ()] and Au4(micro-PP3)X4 [X=Cl (), Br (), I ()] have been prepared by interaction between gold(I) or silver(I) salts and the ligand tris[2-(diphenylphosphino)ethyl]phosphine (PP3) in the appropriate molar ratio. Microanalysis, mass spectrometry, IR and NMR spectroscopies and conductivity measurements were used for characterization. and are ionic dinuclear species containing four-coordinate gold(i) and four/three coordinate silver(i), respectively. Solutions of behave as mixtures of complexes in a 2:1 [Au2(micro-PP3)X2; X=Cl(), Br(), I()] and 4:1 () metal to ligand ratio. and react with free PP(3) in solution to generate the ionic compounds and , respectively. Complexes and , with four linear PAuX fragments per molecule, were shown by X-ray diffraction to consist of dimeric aggregates via close intermolecular gold(I)gold(I) contacts of 3.270 A () and 3.184 A (). The resultant octanuclear systems have an inversion center with two symmetry-related gold(I) atoms being totally out of the aurophilic area and represent a new form of aggregation compared to that found in other halo complexes of gold(I) containing polyphosphines. The luminescence properties of the ligand and complexes, in the solid state, have been studied. Most of the gold systems display intense luminescent emission at room and low temperature. The influence of the halogen on the aurophilic contacts of compounds with a 4:1 metal to ligand ratio results in different photophysical properties, while and are luminescent complex is nonemissive. The luminescence increases with increasing the phosphine/metal ratio affording for complexes , without aurophilic contacts, the stronger emissions. Silver complexes and are nonemissive at room temperature and show weaker emissions than gold(I) species at 77 K.  相似文献   

19.
Several ruthenium(II) complexes with new tridentate polypyridine ligands have been prepared, and their photophysical properties have been studied. The new tridentate ligands are tpy-modified systems (tpy = 2,2':6',2' '-terpyridine) in which aromatic substituents designed to be coplanar with the tpy moiety are introduced, with the aim of enhancing delocalization in the acceptor ligand of the potentially luminescent metal-to-ligand charge-transfer (MLCT) state and increasing the MLCT-MC energy gap (MC = metal-centered excited state). Indeed, the Ru(II) complexes obtained with this new family of tridentate ligands exhibit long-lived luminescence at room temperature (up to 200 ns). The enhanced luminescence properties of these complexes support this design strategy and are superior to those of the model Ru(tpy)22+ compound and compare favorably with those of the best Ru(II) complexes with tridentate ligands reported so far.  相似文献   

20.
The isomeric bis(tridentate) hydrazone ligand strands 1 a-c react with [Ru(terpy)Cl3] (terpy=2,2':6',2'-terpyridine) to give dinuclear rack-type compounds 2 a-c, which were characterised by several techniques, including X-ray crystallography and NMR methods. The absorption spectra, redox behaviour and luminescence properties (both in fluid solution at room temperature and in rigid matrix at 77 K) of the ligand strands 1 a-c and of the metal complexes 2 a-c have been studied. Compounds 1 a-c exhibit absorption spectra dominated by intense pi-pi* bands, which, in the case of 1 b and 1 c, extend within the visible region, while the absorption spectra of the rack-type complexes 2 a-c show intense bands both the in the UV region, due to spin-allowed ligand-centred (LC) transitions, and in the visible, due to spin-allowed metal-to-ligand charge-transfer (MLCT) transitions. The energy position of these bands strongly depends on the ligand strand: in the case of 2 a, the lowest energy MLCT band is around 470 nm, while in 2 b and 2 c, it lies beyond 600 nm. Ligands 1 a-c undergo oxidation processes that involve orbitals based mainly on the CH3--N--N== fragments. The complexes 2 a-c undergo reversible metal-centred oxidation, while reductions involve the hydrazone-based ligands: in 2 b and 2 c, the bridging ligand is reduced twice and in 2 a once before reduction of the peripheral terpy ligands takes place. Ligands 1 a-c exhibit luminescence from the lowest-lying 1pi-pi* level. Only for complex 2 a does emission occur; this may be attributed to a 3MLCT state involving the bridging ligand. Taken together, the results clearly indicate that the structural variations introduced translate into interesting differences in the spectroscopic, luminescence and redox properties of the ligand strands as well as of the rack-type metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号