首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer.  相似文献   

2.
The interaction between glucose oxidase (GOx) and phospholipid monolayers is studied at the 1,2-dichloroethane/water interface by electrochemical impedance spectroscopy. Electrochemical experiments show that the presence of GOx induces changes in the capacitance curves at both negative and positive potentials, which are successfully explained by a theoretical model based on the solution of the Poisson-Boltzmann equation. These changes are ascribed to a reduced partition coefficient of GOx and an increase of the permittivity of the lipid hydrocarbon domain. Our results show that the presence of lipid molecules enhances the adsorption of GOx molecules at the liquid/liquid interface. At low lipid concentrations, the adsorption of GOx is probably the first step preceding its penetration into the lipid monolayer. The experimental results indicate that GOx penetrates better and forms more stable monolayers for lipids with longer hydrophobic tails. At high GOx concentrations, the formation of multilayers is observed. The phenomenon described here is strongly dependent on 1) the GOx and lipid concentrations, 2) the nature of the lipid, and 3) the potential drop across the interface.  相似文献   

3.
The enzyme glucose oxidase (GOx) is reconstituted on a flavin adenin dinucleotide (FAD, 1) cofactor-functionalized Au-nanoparticle (Au-NP), 1.4 nm, and the GOx/Au-NP hybrid is linked to a bulk Au-electrode by a short dithiol, 1,4-benzenedithiol (2), or a long dithiol, 1,9-nonanedithiol (3), monolayer. The reconstituted GOx/Au-NP hybrid system exhibits electrical communication between the enzyme redox cofactor and the Au-NP core. Because the thiol monolayers provide a barrier for electron tunneling, the electron transfer occurring upon the biocatalytic oxidation of glucose results in the Au-NPs charging. The charging of the Au-NPs alters the plasma frequency and the dielectric constant of the Au-NPs, thus leading to the changes of the dielectric constant of the interface. These are reflected in pronounced shifts of the plasmon angle, theta(P), in the surface plasmon resonance (SPR) spectra. As the biocatalytic charging phenomenon is controlled by the concentration of glucose, the changes in the theta(P) values correlate with the concentration of glucose. The biocatalytic charging process is characterized by following the differential capacitance of the GOx/Au-NP interface and by monitoring the potential generated on the bulk Au-electrode. The charging of the GOx/Au-NPs is also accomplished in the absence of glucose by the application of an external potential on the electrode, that resulted in similar plasmon angle shifts. The results allowed us to estimate the number of electrons stored per Au-NP at variable concentrations of glucose in the presence of the two different thiol linkers.  相似文献   

4.
The immobilization of glucose oxidase (GOx), using self assembled monolayers (SAMs) on gold surfaces, was investigated by grazing angle FT-IR spectroscopy, surface plasmon resonance (SPR) spectroscopy, and atomic force microscopy (AFM) in conjunction with confocal laser scanning microscopy (CLSM). To find an optimum condition for the maximum GOx loading density on gold surfaces, different cleaning protocols were examined. The loading density of GOx on surfaces was investigated by AFM and CLSM. In particular, CLSM was more effective for identifying the GOx density than AFM, since its scanning speed is much faster and it covers a larger area. Based on CLSM images of the GOx immobilized on the surfaces, it was concluded that the pre-cleaning process of gold substrates using different solvents, such as acetone, ethanol and 2-propanol, is very important for enhancing the GOx loading density. This result enables us to investigate an effective fabrication process in fabricating biosensors.  相似文献   

5.
In recent years, graphene has been widely used as a high performance two-dimensional material in the development of biosensors and biofuel cells for facilitating direct electron transfer (DET) of glucose oxidase (GOx). However, almost all of these reports perform experiments in the presence of oxygen (a natural mediator of oxidase) and whether the GOx with DET property retained their catalytic activity in the absence of mediators has not been studied in detail so far. In this paper, we investigated the DET property and enzyme activity of GOx on graphene surface without and with mediators. Experimental results showed that the biosensor had no response to glucose in mediator-free solutions, even though the DET of GOx was observed, indicating that the GOx with DET property lacked enzymatically catalytic activity. However, in the presence of mediators, the biosensor showed sensitive response to glucose, illustrating that the mediated enzymatic oxidation of glucose occurred, which can be attributed to the catalytically active GOx without DET capability. These results suggest that DET property and enzyme catalytic activity cannot occur on the same GOx simultaneously. Therefore, keeping enzyme activity and DET of GOx at the same time is still a major challenge for biosensor and biofuel cell researches.  相似文献   

6.
将NaAuCl4、葡萄糖氧化酶(GOx)和葡萄糖混合,借一步酶促反应制得吸附GOx的金纳米颗粒(AuNPs),再通过滴干修饰法研制了Nafion/GOx-AuNPs修饰的玻碳(GC)电极,并考察了该酶电极上GOx的直接电化学和生物传感性能. 这种酶法合成的GOx-AuNPs复合物有良好的酶直接电化学活性,也保持了GOx的生物活性,似可归因于酶法合成的纳米金更接近酶氧化还原活性中心的缘故. 该酶电极在-0.4 V(vs. SCE)电位下,其稳态电流下降与葡萄糖浓度(0.5 4 mmol·L-1)成正比,检测下限0.2 mol·L-1.  相似文献   

7.
采用石英晶体微天平(QCM)技术, 监测了裸金(Au)电极、电沉积纳米金的金电极(Aued/Au)、多壁碳纳米管(MWCNTs)修饰的金电极(MWCNTs/Au)以及MWCNTs 修饰后再电沉积纳米金的金电极(Aued/MWCNTs/Au)上葡萄糖氧化酶(GOx)的吸附过程, 测算了吸附固定的GOx质量. 通过阳极恒电位检测吸附酶与葡萄糖发生酶反应所产生的过氧化氢, 考察了这些酶电极的安培响应, 并测算了各吸附态GOx的质量比生物活性(MSBAi).也通过循环伏安法研究酶的直接电化学, 测算了各吸附态GOx的电活性百分数(EAPi). 实验结果表明, 酶吸附量和酶电极的安培响应满足MWCNTs/Au > Aued/MWCNTs/Au > Aued/Au > Au 的顺序; MSBAi满足Au > Aued/MWCNTs/Au > Aued/Au > MWCNTs/Au的顺序; 而EAPi则满足MWCNTs/Au > Aued/MWCNTs/Au > Aued /Au > Au的顺序. 根据酶和纳米材料的亲疏水作用以及酶的吸附量对实验结果进行了合理解释, 也定量验证了电极上吸附酶分子的总生物活性与酶电极的安培响应呈正相关关系, 所得数据和结论有助于纳米材料固定酶及其安培酶电极的研究.  相似文献   

8.
In this study, the effect of ultrasound on the activity of the glucose oxidase (GOx) enzyme for bleaching of the cotton fabrics was investigated. Hydrogen peroxide generation with the GOx enzyme from glucose was carried out under ultrasonic homogenizer (UH) and ultrasonic bath support. The aim of using ultrasonic support was to increase the yield of the enzyme reactions. The enzymatically generated hydrogen peroxide was used for bleaching of cotton fabrics. The bleaching process was performed at 90 °C and pH 11 (with NaOH) for 60 min, followed by rinsing at 70 and 50 °C then cold washing. The whiteness degrees of the cotton samples that were bleached by the generated peroxide were compared to the whiteness degrees of the conventionally bleached cotton fabrics. Sufficient whiteness degrees in cotton fabrics could be obtained by enzymatically generated hydrogen peroxide by UH support. The initial whiteness degree of the cotton fabric was 59.9 Stensby degrees; the whiteness was increased to 75.6 Stensby degrees by the GOx enzyme under UH support where the conventional bleaching process yielded a whiteness value of 76.7 Stensby degrees. For efficient cotton bleaching by the GOx enzyme, UH support contributed to the concentration of enzymatically generated hydrogen peroxide by the GOx enzyme. Bleaching of cotton by the GOx enzyme was approved as a more environmentally friendly process compared to the conventional bleaching method in respect of the results of chemical oxygen demand tests.  相似文献   

9.
Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.  相似文献   

10.
Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and digital simulation techniques were used to investigate quantitatively the mechanism of electron transfer (ET) through densely packed and well-ordered self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid on gold, either pristine or modified by physically adsorbed glucose oxidase (GOx). In the presence of ferrocenylmethanol (FcMeOH) as a redox mediator, ET kinetics involving either solution-phase hydrophilic redox probes such as [Fe(CN)6]3-/4- or surface-immobilized GOx is greatly accelerated: [Fe(CN)6]3-/4- undergoes diffusion-controlled ET, while the enzymatic electrochemical conversion of glucose to gluconolactone is efficiently sustained by FcMeOH. Analysis of the results, also including the digital simulation of CV and EIS data, showed the prevalence of an ET mechanism according to the so-called membrane model that comprises the permeation of the redox mediator within the SAM and the intermolecular ET to the redox probe located outside the monolayer. The analysis of the catalytic current generated at the GOx/SAM electrode in the presence of glucose and FcMeOH allowed the high surface protein coverage suggested by X-ray photoelectron spectroscopy (XPS) measurements to be confirmed.  相似文献   

11.
A new approach to constructing an enzyme-containing film on the surface of a gold electrode for use as a biosensor is described. A basic multilayer film (BMF) of (PDDA/GNPs) n /PDDA was first constructed on the gold electrode by electrostatic layer-by-layer self-assembly of poly(diallyldimethylammonium chloride) (PDDA) and gold nanoparticles (GNPs). Glucose oxidase (GOx) was then sorbed into this BMF by dipping the BMF-modified electrode into a GOx solution. The assembly of the BMF was monitored and tested via UV-vis spectroscopy and cyclic voltammetry (CV). The ferrocenemethanol-mediated cyclic voltammograms obtained from the gold electrode modified with the (PDDA/GNPs) n /PDDA/GOx indicated that the assembled GOx remained electrocatalytically active for the oxidation of glucose. Analysis of the voltammetric signals showed that the surface coverage of active enzyme was a linear function of the number of PDDA/GNPs bilayers. This result confirmed the penetration of GOx into the BMF and suggests that the BMF-based enzyme film forms in a uniform manner. Electrochemical impedance measurements revealed that the biosensor had a lower electron transfer resistance (R et) than that of a sensor prepared by layer-by-layer assembly of PDDA and GOx, due to the presence of gold nanoparticles. The sensitivity of the biosensor for the determination of glucose, which could be controlled by adjusting the number of PDDA/GNPs bilayers, was investigated.  相似文献   

12.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

13.
通过水热法在长有ZnO籽晶层的柔性聚酰亚胺(PI)衬底上生长了整齐的ZnO纳米棒,ZnO纳米棒的晶体结构和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)等进行表征.通过静电吸附方式,将葡萄糖氧化酶(GOx)固定在其表面.分别对GOx及修饰前后的ZnO纳米棒进行了紫外-可见光谱表征,发现修饰后存在ZnO的吸收峰和GOx的特征吸收峰,表明GOx固定在ZnO表面.通过对修饰样品进行傅里叶变换红外(FTIR)光谱测试发现了与GOx相关的吸收峰,这进一步表明GOx仍保持生物活性.最后在循环伏安曲线的测试中,这种在柔性衬底上制备的生物酶电极表现出非常灵敏的电流响应,为制备柔性葡萄糖生物传感器奠定了实验基础.  相似文献   

14.
In this work, a Ni/Al hydrotalcite (HT) was used as glucose oxidase (GOx) immobilizer. Small‐area and angle‐resolved X‐ray photoelectron spectra were recorded on HTs electrosynthesized on Pt in the absence and in the presence of GOx, and compared with those obtained for a Pt surface, modified with the electrosynthesized HT, on which a drop of GOx solution was deposited. The simultaneous electrodeposition of HT + GOx resulted in a compact deposit, thicker than the XPS sampling depth (>10 nm), that is not homogeneous in the lateral and in‐depth composition. The presence of GOx can be deduced comparing the N1s spectra of HT and HT + GOx: in the latter, the N1s component at 400 eV binding energy (BE) is predominant whilst, depending on the analyzed point, a small or no contribution from the component at 407.2 eV, due to nitrate, is revealed. Angle‐resolved XPS provides evidence on the in‐depth composition of anions, cations and GOx. The results highlight the crucial role played by nickel in GOx immobilization. On the basis of the results, it can be suggested that enzyme activity is unevenly distributed and is localized in small areas, where Ni concentration is higher. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The change in the activity of glucose oxidase subjected to an asymmetrical alternating current (AC) electric field is investigated via horseradish peroxidase (HRP)‐coupled bioassay. The effect of the amplitude, frequency and enzyme concentration have been shown to affect the enzyme activity towards glucose oxidation. The decrease in the enzyme activity is directly related to the change in pH and temperature of the GOx solution during AC electrolysis. The enzyme activity reduces with increasing amplitude, enzyme concentration and decreasing frequency. Results from UV‐vis, FT‐IR and UV CD spectroscopy showed that the AC treated GOx samples undergo structural modifications.  相似文献   

16.
Biomacromolecules, such as enzymes are widely used for biocatalysis, both at academic and industrial level, due to their high specificity and wide applications in different reaction media. Herein, taking GOx as a representative enzyme, in‐situ RAFT polymerization of four different monomers including acrylic acid (AA), methyl acrylate (MA), poly (ethylene glycol) acrylate (PEG‐A) and tert‐butyl acrylate (TBA) were polymerized directly on the surface of GOx to afford GOx‐poly (PEG‐A)(GOx‐PPEG‐A), GOx‐poly(MA)(GOx‐PMA), GOx‐poly(AA)(GOx‐PAA), and GOx‐poly(TBA)(GOx‐PTBA) conjugates, respectively. Thereinto, PAA and PPEG‐A represent the hydrophilic polymers, while PMA and PTBA stand for the hydrophobic ones. Effects of different polymer on the properties of GOx were investigated by measuring the bioactivity and stability of the as‐prepared and different GOx‐polymer conjugates. Higher bioactivity was obtained for GOx modified with hydrophilic polymers compared with that modified with hydrophobic ones. All the tested polymers can enhance the stability of the GOx, while the hydrophobic GOx‐polymers conjugates exhibited much better stability than the hydrophilic ones. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1289–1293  相似文献   

17.
《Electroanalysis》2018,30(8):1642-1652
A newly developed amperometric glucose biosensor based on graphite rod (GR) working electrode modified with biocomposite consisting of poly (pyrrole‐2‐carboxylic acid) (PCPy) particles and enzyme glucose oxidase (GOx) was investigated. The PCPy particles were synthesized by chemical oxidative polymerization technique using H2O2 as initiator of polymerization reaction and modified covalently with the GOx (PCPy‐GOx) after activation of carboxyl groups located on the particles surface with a mixture of N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). Then the PCPy‐GOx biocomposite was dispersed in a buffer solution containing a certain amount of bovine serum albumin (BSA). The resulting biocomposite suspension was adsorbed the on GR electrode surface with subsequent solvent airing and chemical cross‐linking of the proteins with glutaraldehyde vapour (GR/PCPy‐GOx). It was determined that the current response of the GR/PCPy‐GOx electrodes to glucose measured at +300 mV vs Cl reference electrode was influenced by the duration of the PCPy particles synthesis, pH of the GOx solution used for the PCPy particles modification and the amount of immobilized PCPy‐GOx biocomposite. An optimal pH of buffer solution for operation of the biosensor was found to be 8.0. Detection limit was determined as 0.039 mmol L−1 according signal to noise ratio (S/N: 3). The proposed glucose biosensor was tested in human serum samples.  相似文献   

18.
In this article, poly[poly(ethyleneglycol) acrylate] (polyPEG‐A) with mercaptothiazoline ester terminal group was synthesized directly by reversible addition fragmentation chain transfer (RAFT) polymerization using a mercaptothiazoline ester functional RAFT agent. The functional polyPEG‐A was then conjugated to glucose oxidase (GOx) via surface‐tethered amino groups through covalent amide coupling. Sorensenformaltitration assay revealed that GOx retained ~14 free amino groups available for covalent modification. The conjugation reaction turned out to be efficient and mild. Colorimetric method was applied to evaluate the enzymatic activity of native GOx and its derivatives by introducing another enzyme, horseradish peroxidase. The modified GOx with polymeric chains exhibited reduced enzymatic activity toward the catalytical oxidation of glucose, but with significantly increased thermal stability and elongated lifetime. When GOx was modified with polyPEG‐A [molecular weight (MW), 45,000; polydispersity index, 1.12] the enzymatic activity was decreased to 37 U/mg, only 29% left. However, when incubated at 25 °C the modified GOx still retained 9.6% of its original bioactivity after 60 days, whereas the native GOx only lived for 29 days. The more polymer chains or the longer polymer chain attached, the more reduction of the enzymatic activity resulted, however, the longer the lifetime of the enzyme obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A feasible approach to construct multilayered enzyme film on the gold electrode surface for use as biosensing interface is described. The film was fabricated by alternate layer-by-layer deposition of periodate-oxidized glucose oxidase (GOx) and poly(allylamine) (PAA). The covalent attachment process was followed and confirmed by electrochemical impedance spectroscopy (EIS). X-ray diffraction (XRD) experiments revealed that the film was homogeneous and formed in an ordered manner with a thickness of 2.6 ± 0.1 nm per bilayer. The gold electrodes modified with the GOx/PAA multilayers showed excellent electrocatalytical response to the oxidation of glucose when ferrocenemethanol was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). From the analysis of voltammetric signals, the coverage of active enzyme on the electrode surface was estimated, which had a linear relationship with the number of GOx/PAA bilayers. This suggests that the analytical performance such as sensitivity, detection limit, and so on, is tunable by controlling the number of attached bilayers. The six GOx/PAA bilayer electrode exhibited a sensitivity of 15.1 μA mM−1 cm−2 with a detection limit of 3.8 × 10−6 M. In addition, the sensor exhibited good reproducibility and stability.  相似文献   

20.
基于层-层自反应的葡萄糖氧化酶有序多层膜电极   总被引:3,自引:0,他引:3  
以胱胺修饰的金电极为基础电极, 利用席夫碱反应使经高碘酸根氧化的葡萄糖氧化酶在该电极表面进行自身的层-层有序组装. 用电化学交流阻抗法对多层酶膜形成过程的跟踪结果表明, 该多层酶膜的生长是一个逐步形成的均匀过程. 用循环伏安法和I-t曲线法研究了该酶电极对葡萄糖的电催化氧化. 实验结果表明, 当采用羟基二茂铁作为人工电子转移媒介体时, 该酶电极对葡萄糖具有很好的电催化氧化功能. 该传感器制作简便, 响应迅速, 性能稳定, 催化电流与葡萄糖浓度在一定范围内成正比, 并且可以通过控制葡萄糖氧化酶的组装层数来调节该生物传感器的灵敏度与检测限.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号