共查询到20条相似文献,搜索用时 0 毫秒
1.
Replica Exchange Molecular Dynamics (REMD) method is a powerful sampling tool in molecular simulations. Recently, we made a modification to the standard REMD method. It places some inactive replicas at different temperatures as well as the active replicas. The method completely decouples the number of the active replicas and the number of the temperature levels. In this article, we make a further modification to our previous method. It uses the inactive replicas in a different way. The inactive replicas first sample in their own knowledge‐based energy databases and then participate in the replica exchange operations in the REMD simulation. In fact, this method is a hybrid between the standard REMD method and the simulated tempering method. Using different active replicas, one can freely control the calculation quantity and the convergence speed of the simulation. To illustrate the performance of the method, we apply it to some small models. The distribution functions of the replicas in the energy space and temperature space show that the modified REMD method in this work can let the replicas walk freely in both of the two spaces. With the same number of the active replicas, the free energy surface in the simulation converges faster than the standard REMD. © 2016 Wiley Periodicals, Inc. 相似文献
2.
《Journal of computational chemistry》2018,39(23):1913-1921
The free‐energy landscape is an important factor for understanding the conformational equilibria of chemical reactions, and many techniques have been developed to calculate the potential of the mean force. Unfortunately, these methods require a previous knowledge of the system for calculations because the results depend on the reaction coordinates. In this study, we combine the scaled hypersphere search method with the umbrella integration method to obtain the transition states on free‐energy landscapes and minimum‐free‐energy paths (MFEPs). With this approach, the MFEP connections between known and unknown equilibrium points are constructed without the prior knowledge of the free‐energy landscape. The problem of reaction coordinates can be solved by using a multidimensional, fully automated interrogation of MFEPs for acquiring the potential of mean force. The efficiency of the proposed method is demonstrated by applying it to alanine dipeptide and alanine tripeptide. © 2018 Wiley Periodicals, Inc. 相似文献
3.
A comparative study was carried out to test the efficiency with which Metropolis Monte Carlo (MC) and stochastic dynamics (SD) sample the potential energy surface of the N-acetyl glycyl glycine methylamide peptide as defined by the united atom AMBER* force field. Boltzmann-weighted ensembles were generated with variations of all internal degrees of freedom (i.e., stretch, bend, and torsion) for a single N-acetyl glycyl glycine methylamide molecule at 300 K by 108-step MC and 100-ns SD simulations. As expected, both methods gave the same final energetic results. However, convergence was found to be ∼10 times faster with MC than with SD as measured by comparisons of the populations of all symmetrically equivalent conformers. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1294–1299, 1998 相似文献
4.
分子动力学模拟与自由能计算已经在化学、生物学与材料学等领域得到广泛的应用。然而,由于在传统分子动力学模拟的时间尺度内,体系很难跨越较高的自由能能垒,在相空间内的采样大大受限,采样困难使自由能计算难以收敛。增强采样是解决这一问题的有效途径,重要性采样方法就是其中一类。本文综述了四种广泛应用的重要性采样方法--伞状采样方法、metadynamics方法、自适应偏置力方法和温度加速分子动力学方法的原理和进展,其中重点概述了自适应偏置力方法的最新发展--扩展自适应偏置力方法和扩展广义自适应偏置力方法,并对这四种重要性采样方法的优缺点进行了比较。最后,讨论和展望了重要性采样与自由能计算方法面临的挑战和前景,并提出了对自适应偏置力方法可能的改进,如与加速分子动力学(aMD)或弦方法结合以提高在高维度空间中的采样效率。 相似文献
5.
A method is proposed to combine the local elevation (LE) conformational searching and the umbrella sampling (US) conformational sampling approaches into a single local elevation umbrella sampling (LEUS) scheme for (explicit‐solvent) molecular dynamics (MD) simulations. In this approach, an initial (relatively short) LE build‐up (searching) phase is used to construct an optimized biasing potential within a subspace of conformationally relevant degrees of freedom, that is then used in a (comparatively longer) US sampling phase. This scheme dramatically enhances (in comparison with plain MD) the sampling power of MD simulations, taking advantage of the fact that the preoptimized biasing potential represents a reasonable approximation to the negative of the free energy surface in the considered conformational subspace. The method is applied to the calculation of the relative free energies of β‐D ‐glucopyranose ring conformers in water (within the GROMOS 45A4 force field). Different schemes to assign sampled conformational regions to distinct states are also compared. This approach, which bears some analogies with adaptive umbrella sampling and metadynamics (but within a very distinct implementation), is shown to be: (i) efficient (nearly all the computational effort is invested in the actual sampling phase rather than in searching and equilibration); (ii) robust (the method is only weakly sensitive to the details of the build‐up protocol, even for relatively short build‐up times); (iii) versatile (a LEUS biasing potential database could easily be preoptimized for small molecules and assembled on a fragment basis for larger ones). © 2009 Wiley Periodicals, Inc. J Comput Chem 2010 相似文献
6.
This article addresses calculations of the standard free energy of binding from molecular simulations in which a bound ligand is extracted from its binding site by steered molecular dynamics (MD) simulations or equilibrium umbrella sampling (US). Host–guest systems are used as test beds to examine the requirements for obtaining the reversible work of ligand extraction. We find that, for both steered MD and US, marked irreversibilities can occur when the guest molecule crosses an energy barrier and suddenly jumps to a new position, causing dissipation of energy stored in the stretched molecule(s). For flexible molecules, this occurs even when a stiff pulling spring is used, and it is difficult to suppress in calculations where the spring is attached to the molecules by single, fixed attachment points. We, therefore, introduce and test a method, fluctuation‐guided pulling, which adaptively adjusts the spring's attachment points based on the guest's atomic fluctuations relative to the host. This adaptive approach is found to substantially improve the reversibility of both steered MD and US calculations for the present systems. The results are then used to estimate standard binding free energies within a comprehensive framework, termed attach‐pull‐release, which recognizes that the standard free energy of binding must include not only the pulling work itself, but also the work of attaching and then releasing the spring, where the release work includes an accounting of the standard concentration to which the ligand is discharged. © 2013 Wiley Periodicals, Inc. 相似文献
7.
Born‐Oppenheimer ab initio QM/MM molecular dynamics simulation with umbrella sampling is a state‐of‐the‐art approach to calculate free energy profiles of chemical reactions in complex systems. To further improve its computational efficiency, a mass‐scaling method with the increased time step in MD simulations has been explored and tested. It is found that by increasing the hydrogen mass to 10 amu, a time step of 3 fs can be employed in ab initio QM/MM MD simulations. In all our three test cases, including two solution reactions and one enzyme reaction, the resulted reaction free energy profiles with 3 fs time step and mass scaling are found to be in excellent agreement with the corresponding simulation results using 1 fs time step and the normal mass. These results indicate that for Born‐Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, the mass‐scaling method can significantly reduce its computational cost while has little effect on the calculated free energy profiles. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 相似文献
8.
Methods to search for low-energy conformations, to generate a Boltzmann-weighted ensemble of configurations, or to generate classical-dynamical trajectories for molecular systems in the condensed liquid phase are briefly reviewed with an eye to application to biomolecular systems. After having chosen the degrees of freedom and method to generate molecular configurations, the efficiency of the search or sampling can be enhanced in various ways: (i) efficient calculation of the energy function and forces, (ii) application of a plethora of search enhancement techniques, (iii) use of a biasing potential energy term, and (iv) guiding the sampling using a reaction or transition pathway. The overview of the available methods should help the reader to choose the combination that is most suitable for the biomolecular system, degrees of freedom, interaction function, and molecular or thermodynamic properties of interest. 相似文献
9.
André A. S. T. Ribeiro Ricardo B. de Alencastro 《Journal of computational chemistry》2012,33(8):901-905
A mixed Monte Carlo/Molecular Dynamics method using the trial moves for peptide backbone sampling known as Concerted Rotations with Angles was implemented. The algorithm was used to study polyalanine systems. Equivalent results to conventional Molecular Dynamics were obtained for simulations of Ala6 in implicit solvent. To test the efficiency of the implemented method, several 150 ns simulations of Ala12 in explicit water were performed. The results show that the present method yields significantly faster formation of secondary structure than the conventional Molecular Dynamics simulations. This opens the possibility to selectively sample alanine‐rich regions of larger peptides or proteins. It remains to be established whether hydrophilic amino acid residues can be successfully treated with the present methodology. © 2012 Wiley Periodicals, Inc. 相似文献
10.
Musa I. El-Barghouthi Hamzeh M. Abdel-Halim Feryal J. Haj-Ibrahim Khaleel I. Assaf 《Supramolecular chemistry》2013,25(1-2):80-89
Molecular dynamics (MD) simulations were performed for cucurbit[6]uril (CB6) methyl and cyclohexyl derivatives in aqueous solutions. Furthermore, MD simulations have been conducted to study the inclusion complexes between each CB6 derivative with α,ω-pentane diammonium ion (NH3+(CH2)5NH3+) to estimate the binding free energies, the complex geometries and the intermolecular forces responsible for complex formation. Results show a complete inclusion of the guest molecule in the cavity of the host for all complexes. Results also indicate that the guest dynamics inside the cavity of the substituted host is similar to that for the unsubstituted host. This demonstrates that the molecular recognition of the host is not affected by the alkyl substitution at the equator. Also, there is an insignificant conformational change of the macrocyclic structure upon inclusion of the guest. Molecular mechanics/Poisson Boltzmann surface area method was used to estimate the binding free energy of each complex. Results indicate that host–guest electrostatic interactions make the largest contribution to the complex binding free energy. Moreover, van der Waals interactions add significantly to the complex stability. The guest molecules show more or less similar binding free energies with the substituted CB6 that exhibits slightly more negative values than unsubstituted CB6 which is proved also by umbrella sampling. 相似文献
11.
A novel approach for the selection of step parameters as reaction coordinates in enhanced sampling simulations of DNA is presented. The method uses three atoms per base and does not require coordinate overlays or idealized base pairs. This allowed for a highly efficient implementation of the calculation of all step parameters and their Cartesian derivatives in molecular dynamics simulations. Good correlation between the calculated and actual twist, roll, tilt, shift, and slide parameters is obtained, while the correlation with rise is modest. The method is illustrated by its application to the methylated and unmethylated 5′‐CATGTGACGTCACATG‐3′ double stranded DNA sequence. One‐dimensional umbrella simulations indicate that the flexibility of the central CG step is only marginally affected by methylation. © 2014 Wiley Periodicals, Inc. 相似文献
12.
Mihaly Mezei 《Journal of mathematical chemistry》2000,27(3):235-250
The contribution of the molecular flexibility to the solvation excess free energy is expressed in terms of probabilities of reaching hard limits on intramolecular coordinates in a series of calculations successively relaxing those limits. Numerical tests on the harmonic oscillator are also presented and used to make suggestion about computational issues. 相似文献
13.
The investigation of the intermolecular interactions between platinum-based anticancer drugs and lipid bilayers is of special relevance to unveil the mechanisms involved in different steps of the anticancer mode of action of these drugs. We have simulated the permeation of cisplatin through a model membrane composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids by means of umbrella sampling classical molecular dynamics simulations. The initial physisorption of cisplatin into the polar region of the lipid membrane is controlled by long-range electrostatic interactions with the choline groups in a first step and, in a second step, by long-range electrostatic and hydrogen bond interactions with the phosphate groups. The second half of the permeation pathway, in which cisplatin diffuses through the nonpolar region of the bilayer, is characterized by the drop of the interactions with the polar heads and the rise of attractive interactions with the non-polar tails, which are dominated by van der Waals contributions. The permeation free-energy profile is explained by a complex balance between the drug/lipid interactions and the energy and entropy contributions associated with the dehydration of the drug along the permeation pathway and with the decrease and increase of the membrane ordering along the first and second half of the mechanism, respectively. 相似文献
14.
Free energy calculation in molecular simulation is an computationally expensive process. Umbrella sampling (US) is a go-to method for obtaining the potential of mean force (PMF) along a reaction coordinate. Its computational cost increases drastically as the molecular system gets more complex. For many polymeric and biomolecular systems, adequately sampling all configurational degrees of freedom is computationally prohibitive. Using the adsorption of a short-chain methylcellulose on a cellulose crystalline surface as the test case, this study shows that the sampling time required for reliable results is much higher than typical choices made in the literature. The accuracy of the PMF profile is strongly affected by sampling inadequacy in a few regions along the reaction coordinate. Non-uniform windows and sampling parameters are proposed to enhance the sampling in difficult regions. Sampling windows that vary with the local PMF steepness are allocated with a new algorithm. Parameters in this algorithm are optimized for the best sampling efficiency. It is demonstrated that significantly less computer time will be required to achieve the same sampling accuracy if computational resources are optimally distributed along the reaction coordinate. 相似文献
15.
Zhi Wang Jessica M. J. Swanson Gregory A. Voth 《Journal of computational chemistry》2020,41(6):513-519
ClC-ec1 is a Cl−/H+ antiporter that exchanges Cl− and H+ ions across the membrane. Experiments have demonstrated that several mutations, including I109F, decrease the Cl− and H+ transport rates by an order of magnitude. Using reactive molecular dynamics simulations of explicit proton transport across the central region in the I109F mutant, a two-dimensional free energy profile has been constructed that is consistent with the experimental transport rates. The importance of a phenylalanine gate formed by F109 and F357 and its influence on hydration connectivity through the central proton transport pathway is revealed. This work demonstrates how seemingly subtle changes in local conformational dynamics can dictate hydration changes and thus transport properties. © 2019 Wiley Periodicals, Inc. 相似文献
16.
We present a method of parallelizing flat histogram Monte Carlo simulations, which give the free energy of a molecular system as an output. In the serial version, a constant probability distribution, as a function of any system parameter, is calculated by updating an external potential that is added to the system Hamiltonian. This external potential is related to the free energy. In the parallel implementation, the simulation is distributed on to different processors. With regular intervals the modifying potential is summed over all processors and distributed back to every processor, thus spreading the information of which parts of parameter space have been explored. This implementation is shown to decrease the execution time linearly with added number of processors. 相似文献
17.
Stefano Alcaro Tiziana Marino Francesco Ortuso Nino Russo 《International journal of quantum chemistry》2007,107(2):318-325
In this work, we report the results of a combined Monte Carlo (MC) and molecular dynamics (MD) approach applied to the conformational study of natural potent mitosis inhibitor Dolastatin 15. A GRID and CLogP analysis has been performed with the aim to provide some hints to the interpretation of the different behavior of Dolastatin 15 and Dolastatin 10, which has been examined in a former study. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
18.
The relative binding free energies in HIV protease of haloperidol thioketal (THK) and three of its derivatives were examined with free energy calculations. THK is a weak inhibitor (IC50 = 15 M) for which two cocrystal structures with HIV type 1 proteases have been solved [Rutenber, E. et al., J. Biol. Chem., 268 (1993) 15343]. A THK derivative with a phenyl group on C2 of the piperidine ring was expected to be a poor inhibitor based on experiments with haloperidol ketal and its 2- phenyl derivative (Caldera, P., personal communication). Our calculations predict that a 5-phenyl THK derivative, suggested based on examination of the crystal structure, will bind significantly better than THK. Although there are large error bars as estimated from hysteresis, the calculations predict that the 5-phenyl substituent is clearly favored over the 2-phenyl derivative as well as the parent compound. The unfavorable free energies of solvation of both phenyl THK derivatives relative to the parent compound contributed to their predicted binding free energies. In a third simulation, the change in binding free energy for 5-benzyl THK relative to THK was calculated. Although this derivative has a lower free energy in the protein, its decreased free energy of solvation increases the predicted G(bind) to the same range as that of the 2-phenyl derivative. 相似文献
19.
J. Andrew McCammon 《Journal of computational chemistry》2015,36(20):1536-1549
Folding of four fast‐folding proteins, including chignolin, Trp‐cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred‐of‐microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2–2.1 Å of the native NMR or X‐ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second‐order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein‐folding studies. © 2015 Wiley Periodicals, Inc. 相似文献
20.
Dr. Kepa K. Burusco Dr. Neil J. Bruce Irfan Alibay Dr. Richard A. Bryce 《Chemphyschem》2015,16(15):3233-3241
Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm‐enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT‐TI) method. Free energy changes for transitions computed by using IT‐TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm‐enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. 相似文献