首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface functional group chemistry of intact Gram-positive and Gram-negative bacterial cells and their isolated cell walls was examined as a function of pH, growth phase, and growth media (for intact cells only) using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Infrared spectra of aqueous model organic molecules, representatives of the common functional groups found in bacterial cell walls (i.e., hydroxyl, carboxyl, phosphoryl, and amide groups), were also examined in order to assist the interpretation of the infrared spectra of bacterial samples. The surface sensitivity of the ATR-FTIR spectroscopic technique was evaluated using diatom cells, which possess a several-nanometers-thick layer of glycoprotein on their silica shells. The ATR-FTIR spectra of bacterial surfaces exhibit carboxyl, amide, phosphate, and carbohydrate related features, and these are identical for both Gram-positive and Gram-negative cells. These results provide direct evidence to the previously held conviction that the negative charge of bacterial surfaces is derived from the deprotonation of both carboxylates and phosphates. Variation in solution pH has only a minor effect on the secondary structure of the cell wall proteins. The cell surface functional group chemistry is altered neither by the growth phase nor by the growth medium of bacteria. This study reveals the universality of the functional group chemistry of bacterial cell surfaces.  相似文献   

2.
This work presents an investigation of the interaction mechanisms between uranyl ions and a solid phosphate, the zirconium oxophosphate: Zr2O(PO4)2. Both thermodynamic and structural points of view are developed. Indeed, prior to any simulation of the retention data, it is necessary to precisely characterize the system under study in order to gain information at a molecular scale. First, the intrinsic surface properties of this synthetic compound have been investigated for different temperatures ranging from 25 to 90 degrees C. Mass and potentiometric titrations show that the surface site density remains constant between 25 and 90 degrees C, while the experimental point of zero charge slightly decreases from 4.8 to 4.5 with an increasing temperature. The potentiometric titration data are simulated, for each temperature, using the constant capacitance model and taking into account two surface sites ([TRIPLE BOND]ZrO and [TRIPLE BOND]PO) with a total surface site density equal to 7.0 sites nm(-2). For both reactive sites, the intrinsic protonation constants do not change with the temperature, while the deprotonation ones increase. These results led to the determination of the associated enthalpy and entropy changes according to the van't Hoff relation. Second, the speciation of U(VI) at the solid/solution interface has been studied using two complementary spectroscopic techniques probing the sorbed uranyl ions: time-resolved laser-induced fluorescence spectroscopy (TRLFS) and X-ray absorption spectroscopy (EXAFS). The substrate presents two different reactive surface sites against uranium retention, which are constituted by the oxygen atoms of the surface PO4 groups and the oxygen atoms linked to the zirconium atoms. Two inner-sphere complexes are thus present on the substrate, their relative proportion depending on the pH value of the suspension. The effects of the temperature (25-90 degrees C) on the surrounding uranium were checked using the TRLFS technique. The uranyl sorption constants onto the Zr2O(PO4)2 substrate were determined taking into account the structural investigation. The surface complexation modeling was performed using the constant capacitance model included in the FITEQLv4.0 code. The four adsorption edges obtained at 25, 50, 75, and 90 degrees C were simulated. The modeling of these experimental data was realized considering two surface complexes (([TRIPLE BOND]ZrOH)2UO(2+)2, ([TRIPLE BOND]PO)2UO2) according to the structural investigation. The constant value associated with the ZrO site does not change with the temperature, while the one corresponding to the PO site increases. Finally, the enthalpy and entropy changes associated with the uranyl sorption constants have been determined using the van't Hoff relation.  相似文献   

3.
多晶Fe60Ni40合金阳极钝化膜的XPS研究   总被引:1,自引:0,他引:1  
过渡金属Fe、Ni或其合金由于它们具有磁性和在工业上被用作催化剂等,它们与氧化腐蚀性气体02、C12等的作用已被广泛研究[‘-3].含Ni的不锈钢和含Ni50%的FeNi基合金在酸性溶液中表现出比铁更好的耐腐蚀性并增强了氧化钝化层的附着力,放它们在溶液的腐蚀与钝性研究已引起广泛的兴趣,甚至包括对F6Ni基非晶合全玻璃的腐蚀与钝性研究【4一刊,用不同的方法研究溶液状态下的自然氧化膜或阳极钝化膜,得出的结果不同,对腐蚀与钝性解释也很不一致,硼酸一础砂或磷酸一磷酸盐缓冲液在工业上被广泛用作清洗剂、缓蚀剂或成膜剂等·因此,…  相似文献   

4.
The surface sorption of Cm(III) onto aqueous suspensions of alumina is investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The experiment is performed under an Ar atmosphere at an ionic strength of 0.1 M NaClO(4). The pH is varied between 2 and 10 and the metal ion concentration between 2.7x10(-8) and 4.5x10(-5) mol/L. With increasing pH, two Cm(III)-alumina surface species are identified which are attributed to identical withAl-O-Cm(2+)(H(2)O)(5) and identical withAl-O-Cm(+)(OH)(H(2)O)(4). The two curium-alumina surface complexes are characterized by their emission spectra (peak maxima at 601.2 nm and 603.3 nm, respectively) and fluorescence emission lifetime (both 110&mgr;s). In the concentration range investigated, the surface complex formation is not dependent on the metal ion concentration but only on the pH. Additionally, the concentration ratio of the two surface species is found to be independent of the metal ion concentration. No spectroscopic evidence for the presence of "strong" and "weak" sites can be found at different surface coverages. Copyright 2001 Academic Press.  相似文献   

5.
Bacteria have a great influence on the migration behaviour of heavy metals in the environment. Lipopolysaccharides form the main part of the outer membrane of Gram-negative bacteria. We investigated the interaction of the uranyl cation (UO2(2+)) with lipopolysaccharide (LPS) from Pseudomonas aeruginosa by using potentiometric titration and time-resolved laser-induced fluorescence spectroscopy (TRLFS) over a wide pH and concentration range. Generally, LPS consists of a high density of different functionalities for metal binding such as carboxyl, phosphoryl, amino and hydroxyl groups. The dissociation constants and corresponding site densities of these functional groups were determined using potentiometric titration. The combination of both methods, potentiometry and TRLFS, show that at an excess of LPS uranyl phosphoryl coordination dominates, whereas at a slight deficit on LPS compared to uranyl, carboxyl groups also become important for uranyl coordination. The stability constants of one uranyl carboxyl complex and three different uranyl phosphoryl complexes and the luminescence properties of the phosphoryl complexes are reported.  相似文献   

6.
Phosphate-modified AFM tips were prepared by the deposition of self-assembled monolayers (SAMs) of bis(11-thioundecyl) phosphate on Au-coated silicon nitride cantilevers. The properties of the PO(2)H-terminated SAMs were investigated by studying the pH-dependent force interactions of the tips with phosphate- and carboxylic acid-terminated SAM control surfaces. The PO(2)H functional groups had a pK(a) of approximately 5.0. A chemical force microscopy (CFM) study was conducted on the interactions between the probes and the surfaces of hydrous ferric oxide particles prepared in our laboratory by hydrolytic precipitation from FeCl(3). The forces between PO(2)H probes and the hydrous ferric oxide surfaces were seen to exhibit a strong pH dependence, with maximum attractive forces occurring for pH values between 5 and 8. The effects of postprecipitation of the hydrous ferric oxide colloids with orthophosphate, H(2)PO(4)(-), dimethylphosphate, (CH(3)O)(2)PO(2)H (DMP), and tannic acid (TA) on the adhesive interactions between the PO(2)H tips and the solids were also investigated. Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to verify the presence of surface-adsorbed species and zeta potentiometric measurements to determine surface charge on the colloids. We show that the method of chemical force titration using phosphate-terminated tips can differentiate between these various colloids and that it shows promise as a general method for studying this environmentally important class of compounds.  相似文献   

7.
The complexation of uranium(VI) with the amino acids l-glycine and l-cysteine has been investigated by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and UV–Vis spectroscopy at a low pH range. The identified 1:1 and 1:2 uranyl-l-glycine complexes fluoresce and have similar absorbance properties. In contrast to the glycine system, uranyl forms two different non-fluorescent 1:1 complexes with l-cysteine, showing individual absorbance properties under the given experimental conditions. The corresponding complex formation constants were calculated using the spectroscopic data.  相似文献   

8.
The essential structural features of lithium-metal phosphates (LMP) have been studied using FTIR spectroscopy which is a sensitive tool to probe the local environment in the solid materials. Various LMP materials where M is iron have been investigated including phospho-olivine LiFePO(4), diphosphate LiFeP(2)O(7), Nasicon-type phosphate Li(3)Fe(2)(PO(4))(3) and dihydrate FePO(4).2H(2)O. Vitreous and amorphous materials are also considered. Analysis of internal and external modes of vibration allows to distinguish between the different phases and the type of cationic environment in the framework. Results corroborate the contribution of the main factors which are responsible for the complexity of the spectra, i.e. departure from ideal symmetry, interactions between polyhedra, bridging atoms and lattice distortion.  相似文献   

9.
磷酸根离子在阴离子交换树脂上的保留行为及其机理探讨   总被引:2,自引:0,他引:2  
丁明玉  陈培榕 《色谱》1998,16(6):516-519
首次发现磷酸根离子在阴离子交换柱上以两个色谱峰流出。在研究磷酸根离子的保留行为的基础上,提出了H2PO-4在固定相中进一步离解的保留机理,即H2PO-4在与阴离子交换树脂交换基进行离子交换的过程中,由于树脂交换基和淋洗离子的电荷相互作用促使一部分H2PO-4进行第2级离解。由于H2PO-4和HPO2-4在阴离子交换树脂上的保留值不同,导致磷酸根离子出现“双峰”。  相似文献   

10.
A mixture of dihydrogen phosphate and phosphoric acid has been crystallized with a hexaprotonated 26-membered polyammonium macrocycle, 1,4,7,14,17,20-hexaazacyclohexacosane, as the counterion. The complex crystallizes in the monoclinic space group P2(1)/c with unit cell parameters of a = 10.006(2) A, b = 12.525(1) A, c = 19.210(2) A, beta = 102.91(1) degrees, and V = 2346.6(5) A3. The hexaprotonated macrocycle is located on a crystallographic center of inversion and is surrounded by eight phosphate anions. Six of the phosphates are dihydrogen phosphates (H2PO4-), and the other two are neutral phosphoric acid molecules. Intricate hydrogen-bonding networks, involving the anionic and neutral phosphates and the protonated macrocycle, dominate the crystal lattice. Potentiometric studies using NaCl as the supporting electrolyte indicate high formation constants for the triprotonated macrocycle, H3L3+, with PO4(3-) at pH approximately 9.5 (log K = 4.55(4)), for the tetraprotonated macrocycle, H4L4+, with monohydrogen phosphate, HPO4(2-), at pH approximately 8.0 (log K = 6.01(3)), and for ditopic complexes with H5L5+ and H6L6+ and dihydrogen phosphate, H2PO4-, at pH approximately 4.0 (log K = 6.16(6)) and pH approximately 2.5 (log K = 6.44(5)), respectively. The ditopic behavior in the simple polyazamacrocycle receptor is a somewhat unusual occurrence, as is the finding of phosphoric acid species in the crystal structure.  相似文献   

11.
The adsorption kinetics of phosphate on goethite has been studied by batch adsorption experiments and by in situ ATR-IR spectroscopy at different pH, initial phosphate concentrations and stirring rates. Batch adsorption results are very similar to those reported by several authors, and show a rather fast initial adsorption taking place in a few minutes followed by a slower process taking place in days or weeks. The adsorption kinetics could be also monitored by integrating the phosphate signals obtained in ATR-IR experiments, and a very good agreement between both techniques was found. At pH 4.5 two surface complexes, the bidentate nonprotonated (FeO)(2)PO(2) and the bidentate protonated (FeO)(2)(OH)PO complexes, are formed at the surface. There are small changes in the relative concentrations of these species as the reaction proceeds, and they seem to evolve in time rather independently. At pH 7.5 and 9 the dominating surface species is (FeO)(2)PO(2), which is accompanied by an extra unidentified species at low concentration. They also seem to evolve independently as the reaction proceeds. The results are consistent with a mechanism that involve a fast adsorption followed by a slow diffusion into pores, and are not consistent with surface precipitation of iron phosphate.  相似文献   

12.
Direct infusion electrospray ionization mass spectrometry (DIES-MS) of crude bacterial extracts is a rapid method that can be used to characterize microbial cells. Phospholipids, metabolites, and proteins can be detected rapidly with minimal sample preparation. However, several factors influence the detection of signals in such high-throughput analyses. We studied the influence of solvent conditions, including the organic content and pH of the solvent, on the extraction and subsequent detection of signals in DIES-MS, with a view to improving the detection of protein signals. Unfractionated cell extracts from three strains of the Gram-negative Escherichia coli (including one encoding a recombinant green fluorescence protein), and the Gram-positive Bacillus sphaericus and B. subtilis were investigated. Both pH and the organic content of the solvent were found to influence the spectral information as observed from principal component analysis of the spectral data. A polar solvent with higher organic content resulted in the extraction of phospholipids that overtly dominate the spectral information. Decreasing the organic content of the extraction solvent resulted in the improved detection of protein peaks. Altering the pH of the extraction solvent resulted in different protein profiles from the same bacterium, as observed after spectral deconvolution. In addition, the protein profiles were also different when using different organic solvents. Spectral deconvolution showed several protein peaks that had mass-based homology with those in protein databases for the (sequenced) organisms studied. These results suggest that a combination of solvent conditions can be used to generate protein profiles rapidly that when combined can provide additional valuable proteomic information.  相似文献   

13.
We have studied the influence of different groups esterified to phosphates on the strength of the interaction of the PO bond with one water molecule. Experimental vibrational spectra of PO(4)3-, HPO4(2-), H2PO4-, phosphoenolpiruvate (PEP) and ortho-phosphocholamine (o-PC) were obtained by means of FTIR spectroscopy. Geometry calculations were performed using standard gradient techniques and the default convergence criteria as implemented in GAUSSIAN 98 Program. In order to assess the behaviour of such DFT theoretical calculations using B3LYP with 6-31G* and 6-311++G** basis sets, we carried out a comparative work for those compounds. The results were then used to predict the principal bands of the vibrational spectra and molecular parameters (geometrical parameters, stabilisation energies, electronic density). In this work, the relative stability and the nature of the PO bond in those compounds were systematically and quantitatively investigated by means of Natural Bond Order (NBO) analysis. The topological properties of electronic charge density are analysed employing Bader's Atoms in Molecules theory (AIM). The hydrogen bonding of phosphate groups with water is highly stable and the PO bond wavenumbers are shifted to lower experimental and calculated values (with the DFT/6-311++G** basis set). Accordingly, the predicted order of the relative stability of the hydrogen bonding of the water molecule to the PO bond of the investigated compounds is: PO(4)3->HPO4(2-)>H2PO4->phosphoenolpiruvate>phosphocholamine for the two basis sets used.  相似文献   

14.
合成了化合物(2E,2′E)-2,2′-(1,4-苯基双亚甲基双硫代氨基脲)(C10H12N6S2)(L),利用L与钆离子形成了配合物(GdL)。用UV-Vis吸收光谱考察其与F-、Cl-、Br-、I-、Ac-、NO3-、HSO4-和H2PO4-等阴离子的识别。研究表明,加入F-或H2PO4-时,溶液颜色由无色变为黄色,加入其它阴离子没有变化,从而实现受体对这两种阴离子的检测。Job法表明主客体间形成1∶1配合物。受体对两种离子的识别作用主要源于配合物多余的结合位点。在此基础上,以GdL的DMSO溶液作为起始状态,以F-和H2PO4-为两化学输入,构建了一个"或"(OR)分子逻辑门。  相似文献   

15.
Electrophoretic mobilities of various synthetic and semisynthetic hydroxyapatites (Ca10(PO4)6(OH)2, HAP) suspended in aqueous solutions have been measured as a function of pH and calcium concentration. The studied powders differ in particle size, crystallinity degree and surface contamination (carbonate). When equilibrated in mineral acids or bases, a large plateau of negative mobility is observed in the pH range 5-8, with increasing negative values at higher pH. Only in the case of the sample composed of nanoparticles, positive mobility obtains at pH < 8.9. When Ca2+ is added, positive mobility values are observed for all samples, and a bell-shaped profile results as a function of pH. Two possible models are explored to describe the results: the Nernstian approach, which assumes solubility equilibrium and surface potentials determined by the three potential-determining ions (Ca2+, PO3-4, and OH-), and the surface complexation approach, based on the idea of negligible phase transfer of structural phosphate. The Nernstian model is inadequate, whereas a very simple surface complexation model based on the equations Ca5(PO4)+3 = Ca4(PO4)-3 + Ca2+,Ca4(PO4)-3 + H+ = Ca4(PO4)2(PO4H),Ca5(PO4)+3 + OH- = Ca5(PO4)3(OH),coupled with a very simple electrical double layer, model suffices to reproduce the bell-shaped profile of the mobility as a function of pH in the presence of added calcium salts. The results also show that the sample composed of nanoparticles exchanges ions more easily with the solution, without reaching the solubility equilibrium in the explored timespans. In the presence of soluble phosphate salts, it is postulated that the same surface ensembles define the surface charge, with participation of phosphate as described by the equation Ca5(PO4)+3 + PO3-4 = Ca4(PO4)-3.HAP is just one member of a family of calcium phosphates with different (Ca)/(P) ratios. Electrophoretic mobilities of another member, tricalcium diphosphate, Ca3(PO4)2, were also measured and shown to be described by the same basic model. Comparison with previous literature data shows that the negative plateau in the mobility is a general feature of many HAP samples at low Ca2+, again in agreement with the surface complexation model. FTIR data demonstrates that surface phosphate indeed undergoes protonation, as postulated in the model.  相似文献   

16.
Five macrocycle-oxoanion adducts have been isolated from aqueous solutions containing 1,4,7,10,13,16-hexaazacyclooctadecane ([18]aneN(6), L) and phosphoric acid whose pH had been adjusted to selected values in the 1-8 range. Four products, (H(6)L)(H(2)PO(4))(6).2H(3)PO(4) (1), (H(6)L)(H(2)PO(4))(6) (2), (H(4)L)(H(2)PO(4))(4).2H(2)O (4), and (H(4)L)(HPO(4))(2).7H(2)O (5) crystallized from aqueous solutions at pH 1, 3, 6, and 8, respectively, while (H(4)L)(H(2)PO(4))(4) (3) crystallized on diffusion of EtOH into an aqueous reaction mixture at pH 6. Single-crystal X-ray structure determinations enabled an examination of supramolecular interactions between protonated forms of [18]aneN(6), phosphoric acid and its conjugate bases, and water of solvation. The macrocycle adopts a variety of conformations in order to accommodate the supramolecular constructs formed by the oxoanions and solvent molecules as the relative proportions of interacting species are altered. At pH 1 and 3, the fully protonated macrocycle, [LH(6)](6+), is found with six H(2)PO(4)(-) anions. At pH 6 and 8, the tetraprotonated macrocycle, [LH(4)](4+), crystallizes with four H(2)PO(4)(-) and two HPO(4)(2)(-), respectively. Variations in the solute of crystallization are evident, with phosphoric acid being present at the lowest pH and water at pH 6 and 8. In 5, the seven unique water molecules form a string-of-pearls motif within which a new heptameric isomer, consisting of a water pentamer that uses a single water to interact with the other two unique water molecules, is found. Structures 1, 2, 4, and 5 exhibit eta-3 H-bonding of ammonium protons to a single oxygen of the guest phosphates located above and below the macrocyclic ring. In 3, two phosphate oxygens of the cavity anion interact with the macrocycle, one of which participates in eta-2 H-bonding with ammonium groups.  相似文献   

17.
Single-crystalline nanobelts and nanorings of Na(2)V(6)O(16)·3H(2)O structures have been facilely synthesized through a direct hydrothermal reaction between NaVO(3) and H(3)PO(4), without the addition of any harmful solvents or surfactants. The analytical techniques of scanning electron microscopy, transmission electron microscopy (TEM), powder X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared, high-resolution TEM, and selected-area electron diffraction have been used to characterize the morphology, composition, and structure of the synthesized products. The Na(2)V(6)O(16)·3H(2)O nanobelts are up to several hundreds of micrometers in length and 100-300 nm in thickness, and for nanorings, the diameters are 4.5-6.5 μm. H(3)PO(4) plays a key role in maintaining the pH of the solution as well as producing PO(4)(3-) ions in solution. The chemical reactions and a possible growth mechanism involved in the formation of Na(2)V(6)O(16)·3H(2)O nanobelts and nanorings are briefly discussed.  相似文献   

18.
The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.  相似文献   

19.
Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH(4))Al(3)(PO(4))(3)(OH)·9(H(2)O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H(2)PO(4), OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.  相似文献   

20.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH4)Na(PO4)·4H2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm(-1) defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm(-1). Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO4(3-), H2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a 'cave' situation enables the detection of minerals, some of which may remain to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号