首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amidines and guanidines are important functional groups in molecular recognition and host-guest chemistry. Here it is shown that lipophilic amidinium ions catalyze a cycloaddition reaction representing the key step of the Quinkert-Dane estrone synthesis. Hydrogen-bond-mediated association with the organic cation leads to an electrophilic activation of the dienophile and to enhanced rates of the Diels-Alder reaction. The observed effects are similar to those expected from mild Lewis acids. In competition experiments, amidinium catalysis favors the reaction of the less electron deficient dienophile.  相似文献   

2.
Hauser FM  Xu YJ 《Organic letters》1999,1(2):335-336
[formula: see text] A regio- and stereospecific total synthesis of (+/-)-methyl rishirilide B (2b), and (alpha)2-macroglobulin inhibitor, is described. A key feature of the synthetic plan was regiospecific construction of a hydroanthracenone intermediate through condensation of a phenylsulfonyl isobenzofuranone with a functionalized 2-cyclohexen-1-one. Introduction of the vicinal trans-hydroxyl groups in the densely functionalized A-ring was accomplished via a novel one-pot procedure that involved oxidation of enolate anions with the Davis reagent.  相似文献   

3.
This study is devoted to a detailed theoretical study of an inverse-electron demand Diels-Alder reaction (IDA) with 1,3,5-triazine as the diene and 2-aminopyrrole 1A(alpha) as the dienophile, which is a key step in a cascade reaction for the one-pot synthesis of purine analogues. Geometries were optimized with the B3LYP/6-31G* method and energies were evaluated with the MP2/6-311++G** method. This IDA reaction occurs through a stepwise mechanism, where the first step corresponds to the nucleophilic attack of 2-aminopyrrole to triazine to form a zwitterionic intermediate, which is in equilibrium with a neutral intermediate through a hydrogen transfer process, followed by a rate-determining ring-closure step. It is shown that the B3LYP method significantly overestimates the activation energy, whereas the MP2 method offers a reasonable activation barrier of 27.9 kcal/mol in the gas phase. The solvation effect has been studied by the PCM model. In DMSO, the calculated activation energy of the IDA reaction is decreased to 24.0 kcal/mol with a strong endothermicity of 17.4 kcal/mol due to the energy penalty of transforming two aromatic reactants into a nonaromatic IDA adduct. The possible stepwise [2+2] pathway is ruled out based on its higher activation and reaction energies than those of the [4+2] pathway. By comparing the IDA reactions of triazine to 2-aminopyrrole and pyrrole, we address two crucial roles of the alpha-amino substituent in lowering activation and reaction energies and controlling the reaction regiochemistry.  相似文献   

4.
[reaction: see text] Two model studies in support of a total synthesis of the complex polycyclic alkaloid daphnilactone B have been completed. The objectives of the models studies were to demonstrate the use of a tandem double-intramolecular [4+2]/[3+2] nitroalkene cycloaddition for the stereocontrolled construction of four of the rings in the core of the natural product. The first model study established the ability to create a pyrrolidine ring corresponding to ring A of daphnilactone B through a modification of the dipolarophile and subsequent functional group manipulations. The second model study required the modification of the dienophile in the [4+2] cycloaddition to accommodate the formation of a piperidine ring (ring B of daphnilactone B). Nitroalkene 26 containing a diene as the dienophile served well in the tandem cycloaddition to afford the nitroso acetal 38a in 77% yield. Subsequent functional group manipulations allowed for the high-yielding conversion to the core of daphnilactone B.  相似文献   

5.
A highly diastereoselective synthesis of the top half (4) of kijanolide is described. The key step is the exo and diastereoface selective Diels-Alder reaction of triene 6 and chiral dienophile 6.  相似文献   

6.
Jung ME  Chu HV 《Organic letters》2008,10(16):3647-3649
An efficient synthesis of the tetracyclic steroid core, 19, of rhodexin A and sarmentogenin is reported. An initial inverse-electron-demand Diels-Alder reaction of the acyldiene 6 with the silyl enol ether 7a gave the cycloadduct 8 with the required four contiguous stereocenters in a single step. This compound was then transformed into the methylated enedione 13 which afforded after a reductive alkylation and annulation sequence the tetracycle 19.  相似文献   

7.
A concise synthesis of (+)-rishirilide B (2) is described. This is the first synthesis to be reported for the (+)-enantiomer of rishirilide B (2) as found in nature. The strategy accentuates the valuable combination of a method for o-quinone methide coupling with a method for enantioselective resorcinol dearomatization, which provides a densely functionalized chiral building block. The convergent synthesis illustrates several improvements and refinements to these methods and their supporting chemistries. Among these is the in situ generation of PhI[OTMS]OTf. Combination of this oxidant with phenol 31 constitutes the first example of a diastereoselective oxidative dearomatization of a resorcinol displaying a 2-alkyl substituent. In addition, the preparation of the cyclic sulfone 34 is reported. As a new dimethide precursor expressing a readily cleavable O-benzyl residue, sulfone 34 should prove useful in future endeavors. A protocol using the aluminum amide of dimethylhydrazine for opening and cleavage of a [1,4]-dioxan-2-one is also described. This procedure unmasks the hydroxy dione 36 by jettisoning the chiral directing group. Regioselective O-carbamylation of the 1,3-dione 36 enables the transformation of the remaining carbonyl into the alpha-hydroxy carboxylic acid found in 2. The total synthesis of (+)-rishirilide B (2) requires 15 pots from benzaldehyde 17 and 13 pots from benzaldehyde 32. The final product emerges in yields of 12.5% and 20.3% from compounds 17 and 32, respectively. The longest linear sequence requires eight chromatographies. Important observations leading to the development of the principle asymmetric method are described within the context of the total synthesis.  相似文献   

8.
Full details of two versions of the total synthesis of epoxyquinols A, B, and C and epoxytwinol A (RKB-3564D) are described. In the first-generation synthesis, the HfCl(4)-mediated diastereoselective Diels-Alder reaction of furan with Corey's chiral auxiliary has been developed. In the second-generation synthesis, a chromatography-free preparation of an iodolactone, by using acryloyl chloride as the dienophile in the Diels-Alder reaction of furan, and the lipase-mediated kinetic resolution of a cyclohexenol derivative have been developed. This second-generation synthesis is suitable for large-scale preparation. A biomimetic cascade reaction involving oxidation, 6pi-electrocyclization, and then Diels-Alder dimerization is the key reaction in the formation of the complex heptacyclic structure of epoxyquinols A, B, and C. Epoxytwinol A is synthesized by the cascade reaction composed of oxidation, 6pi-electrocyclization, and formal [4 + 4] cycloaddition reactions. A 2H-pyran, generated by oxidation/6pi-electrocyclization, acts as a good diene, reacting with several dienophiles to afford polycyclic compounds in one step. An azapentacyclic compound is synthesized by a similar cascade reaction composed of the four successive steps: oxidation, imine formation, 6pi-azaelectrocyclization, and Diels-Alder dimerization.  相似文献   

9.
A route enabling the synthesis of the stereo-triad of rishirilide B (1) from 2-hydroxy-3-methylnaphthalene-1,4-dione, is reported. Key transformations include the regioselective 1,2-Grignard addition to a tautomeric mixture of o- and p-quinones, regioselective carbamoylation of a tautomeric mixture, and a synopsis of the methods explored to convert various terminal vinyl ethers into the corresponding carboxylic acid by cleavage.  相似文献   

10.
The first enantioselective total synthesis of the rearranged Securinega alkaloid (-)-secu'amamine A is reported starting from D-proline as the source of absolute chirality. The synthesis requires 15 steps starting from D-proline-derived N-trityl aldehyde 11 and proceeds in approximately 9% overall yield. Key steps include a stereoselective conjugate addition of pyrrolidino enedione 19 to afford indolizidine 24 as the major product and cyclization/lactonization of diketoester 25 to produce tetracycle 26. In addition, 1H NMR NOE studies and X-ray analysis on the synthetic alkaloid have established that the indolizidine moiety is trans-fused.  相似文献   

11.
The key platinum mediated C-H bond activation and functionalization steps in the synthesis of (-)-rhazinilam (Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900) were investigated using the M06 and B3LYP density functional approximation methods. This computational study reveals that ethyl group dehydrogenation begins with activation of a primary C-H bond in preference to a secondary C-H bond in an insertion/methane elimination pathway. The C-H activation step is found to be reversible while the methane elimination (reductive elimination) transition state controls rate and diastereoselectivity. The chiral oxazolinyl ligand induces ethyl group selectivity through stabilizing weak interactions between its phenyl group (or cyclohexyl group) and the carboxylate group. After C-H activation and methane elimination steps, Pt-C bond functionalization occurs through β-hydride elimination to give the alkene platinum hydride complex.  相似文献   

12.
A multicomponent domino reaction that affords 6H-dibenzo[b,d]pyran-6-ones is reported. The overall transformation consists of six reactions: Knoevenagel condensation, transesterification, enamine formation, an inverse electron demand Diels-Alder (IEDDA) reaction, 1,2-elimination, and transfer hydrogenation. Both the diene and dienophile for the key inverse electron demand Diels-Alder (IEDDA) step are generated in situ by secondary amine-mediated processes. In most cases, the yields (10-79%) are considerably better than those obtained using a stepwise process. This methodology is employed in a concise total synthesis of cannabinol.  相似文献   

13.
The catalytic effect of ionization on the Diels-Alder reaction between 1,3-butadiene and acrylaldehyde has been studied using relativistic density functional theory (DFT). Removal of an electron from the dienophile, acrylaldehyde, significantly accelerates the Diels-Alder reaction and shifts the reaction mechanism from concerted asynchronous for the neutral Diels-Alder reaction to stepwise for the radical-cation Diels-Alder reaction. Our detailed activation strain and Kohn-Sham molecular orbital analyses reveal how ionization of the dienophile enhances the Diels-Alder reactivity via two mechanisms: (i) by amplifying the asymmetry in the dienophile's occupied π-orbitals to such an extent that the reaction goes from concerted asynchronous to stepwise and thus with substantially less steric (Pauli) repulsion per reaction step; (ii) by enhancing the stabilizing orbital interactions that result from the ability of the singly occupied molecular orbital of the radical-cation dienophile to engage in an additional three-electron bonding interaction with the highest occupied molecular orbital of the diene.  相似文献   

14.
Jung YG  Kang HU  Cho HK  Cho CG 《Organic letters》2011,13(21):5890-5892
A new synthetic route to (±)-pancratistatin was devised utilizing β-silyl styrene as a dienophile in the cycloaddition with 3,5-dibromo-2-pyrone. The TMS group incorporated in the cycloadduct permitted a facile elimination process for the eventual installation of the C(1)-OH function. Subsequent transformations including Curtius rearrangement and Bischler-Napieralski reactions completed the total synthesis of (±)-pancratistatin.  相似文献   

15.
The total synthesis of the epidermal growth factor inhibitor reveromycin B (2) in 25 linear steps from chiral methylene pyran 13 is described. The key steps involved an inverse electron demand hetero-Diels-Alder reaction between dienophile 13 and diene 12 to construct the 6,6-spiroketal 11 which upon oxidation with dimethyldioxirane and acid catalyzed rearrangement gave the 5,6-spiroketal aldehyde 9. Lithium acetylide addition followed by oxidation/reduction and protective group manipulation provided the reveromycin B spiroketal core 8 which was converted into the reveromycin A (1) derivative 6 in order to confirm the stereochemistry of the spiroketal segment. Introduction of the C1-C10 side chain began with sequential Wittig reactions to form the C8-C9 and C7-C6 bonds, and a tin mediated asymmetric aldol reaction installed the C4 and C5 stereocenters. The final key steps to the target molecule 2 involved a Stille coupling to introduce the C21-C22 bond, succinoylation, selective deprotection, oxidation, and Wittig condensation to form the final C2-C3 bond. Deprotection was effected by TBAF in DMF to afford reveromycin B (2) in 72% yield.  相似文献   

16.
The total synthesis of (-)-colombiasin A (2) and (-)-elisapterosin B (3) has been achieved. The key step is a C-H functionalization process, the combined C-H activation/Cope rearrangement, between methyl (E)-2-diazo-3-pentenoate and 1-methyl-1,2-dihydronaphthalenes. When the reaction is catalyzed by dirhodium tetrakis((R)-(N-dodecylbenzenesulfonyl)prolinate), Rh(2)(R-DOSP)(4), an enantiomer differentiation step occurs where one enantiomer of the dihydronaphthalene undergoes the combined C-H activation/Cope rearrangement while the other undergoes cyclopropanation. This sequence controls the three key stereocenters in the natural products such that the remainder of the synthesis is feasible using standard chemistry.  相似文献   

17.
Asymmetric synthesis of a functionalised cyclohexenone required for total synthesis of CP-225,917 and CP-263,114 is reported, using a Lewis acid-promoted Diels-Alder reaction between a 2-silyloxy-1,3-diene and a dienophile bearing an oxazolidinone auxiliary. A novel method for appendage of the exocyclic malonate unit, via cyclopropane ring opening, is also described.  相似文献   

18.
Spirotenuipesines A and B, isolated from the entomopathogenic fungus Paecilomyces tenuipes by Oshima and co-workers, have been synthesized. The synthesis features the highly stereoselective construction of two vicinal all-carbon quaternary centers (C(5) and C(6)) via an intramolecular cyclopropanation/radical initiated fragmentation sequence and a diastereoselective intermolecular Diels-Alder reaction between alpha-methylenelactone dienophile 20 and synergistic diene 6a. Installation of the C(9) tertiary alcohol occurred via nucleophilic methylation. An RCM reaction to produce a tetrasubstituted double bond in the presence of free allylic alcohol and homoallylic oxygenated functional group is also described. This route shortened the synthesis of 11 from 9 steps to 3 steps. We have further developed a strategy to gain access to optically active spirotenuipesines A and B through the synthesis of enantioenriched 10 from commercially available R-(-)-epichlorohydrin.  相似文献   

19.
In this work, we used Density Functional Theory calculations to assess the factors that control the reactivity of a chiral anthracene template with three sets of dienophiles including maleic anhydrides, maleimides and acetoxy lactones in the context of Diels-Alder cycloadditions. The results obtained here (at the M06-2X/6-311++G(d,p) level of theory) suggest that the activation energies for maleic anhydrides and acetoxy lactones are dependent on the nature of the substituent in the dienophile. Among all studied substituents, only −CN reduces the energy barrier of the cycloaddition. For maleimides, the activation energies are independent of the heteroatom of the dienophile and the R group attached to it. The analysis of frontier molecular orbitals, charge transfer and the activation strain model (at the M06-2X/TZVP level based on M06-2X/6-311++G(d,p) geometries) suggest that the activation energies in maleic anhydrides are mainly controlled by the amount of charge transfer from the diene to the dienophile during cycloaddition. For maleimides, there is a dual control of interaction and strain energies on the activation energies, whereas for the acetoxy lactones the activation energies seem to be controlled by the degree of template distortion at the transition state. Finally, calculations show that considering a catalyst on the studied cycloadditions changes the reaction mechanism from concerted to stepwise and proceed with much lower activation energies.  相似文献   

20.
Asymmetric oxyallylation reactions and ring-closing metathesis have been used to synthesize compound 3, a key advanced intermediate used in the total synthesis of eleutherobin reported by Danishefsky and co-workers. The aldehyde 6, which is readily prepared from commercially available R-(-)-carvone in six steps in 30 % overall yield on multigram quantities, was converted into the diene 5 utilizing two stereoselective titanium-mediated Hafner-Duthaler oxyallylation reactions. The reactions gave the desired products (8 and 12) in high yields (73 and 83 %, respectively) as single diastereoisomers, with the allylic alcohol already protected as the p-methoxyphenyl (PMP) ether, which previous work has demonstrated actually aids ring-closing metathesis compared to other protective groups and the corresponding free alcohol. Cyclization under forcing conditions, using Grubbs' second-generation catalyst 13, gave the ten-membered carbocycle (E)-14 in 64 % yield. This result is in sharp contrast to similar, but less functionalized, dienes, which have all undergone cyclization to give the Z stereoisomers exclusively. A detailed investigation of this unusual cyclization stereochemistry by computational methods has shown that the E isomer of the ten-membered carbocycle is indeed less thermodynamically stable than the corresponding Z isomer. In fact, the selectivity is believed to be due to the dense functionality around the ruthenacyclobutane intermediate that favors the trans-ruthenacycle, which ultimately leads to the less stable E isomer of the ten-membered carbocycle under kinetic control. During the final synthetic manipulations the double bond of enedione (E)-16 isomerized to the more thermodynamically stable enedione (Z)-4, giving access to the advanced key-intermediate 3, which was spectroscopically and analytically identical to the data reported by Danishefsky and co-workers, and thereby completing the formal synthesis of eleutherobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号