首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time total structure determination of homoleptic alkynyl‐protected gold nanoclusters is reported. The nanoclusters are synthesized by direct reduction of PhC≡CAu, to give Au44(PhC≡C)28 and Au36(PhC≡C)24. The Au44 and Au36 nanoclusters have fcc‐type Au36 and Au28 kernels, respectively, as well as surrounding PhC≡C‐Au‐C2(Ph)Au‐C≡CPh dimeric “staples” and simple PhC≡C bridges. The structures of Au44(PhC≡C)28 and Au36(PhC≡C)24 are similar to Au44(SR)28 and Au36(SR)24, but the UV/Vis spectra are different. The protecting ligands influence the electronic structures of nanoclusters significantly. The synthesis of these two alkynyl‐protected gold nanoclusters indicates that a series of gold nanoclusters in the general formula Aux (RC≡C)y as counterparts to Aux (SR)y can be expected.  相似文献   

2.
Although face‐centered cubic (fcc), body‐centered cubic (bcc), hexagonal close‐packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix‐packed (fcc and non‐fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au49(2,4‐DMBT)27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single‐crystal X‐ray crystallography, which revealed that Au49(2,4‐DMBT)27 contains a unique Au34 kernel consisting of one quasi‐fcc‐structured Au21 and one non‐fcc‐structured Au13 unit (where 2,4‐DMBTH=2,4‐dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non‐fcc structure.  相似文献   

3.
Aurophilic interactions (AuI???AuI) are crucial in directing the supramolecular self‐assembly of many gold(I) compounds; however, this intriguing chemistry has been rarely explored for the self‐assembly of nanoscale building blocks. Herein, we report on studies on aurophilic interactions in the structure‐directed self‐assembly of ultrasmall gold nanoparticles or nanoclusters (NCs, <2 nm) using [Au25(SR)18]? (SR=thiolate ligand) as a model cluster. The self‐assembly of NCs is initiated by surface‐motif reconstruction of [Au25(SR)18]? from short SR‐[AuI‐SR]2 units to long SR‐[AuI‐SR]x (x>2) staples accompanied by structure modification of the intrinsic Au13 kernel. Such motif reconstruction increases the content of AuI species in the protecting shell of Au NCs, providing the structural basis for directed aurophilic interactions, which promote the self‐assembly of Au NCs into well‐defined nanoribbons in solution. More interestingly, the compact structure and effective aurophilic interactions in the nanoribbons significantly enhance the luminescence intensity of Au NCs with an absolute quantum yield of 6.2 % at room temperature.  相似文献   

4.
Isomerism of atomically precise noble metal nanoclusters provides an excellent platform to investigate the structure–property correlations of metal nanomaterials. In this study, we performed density functional theory (DFT) and time‐dependent (TD‐DFT) calculations on two Au21(SR)15 nanoclusters, one with a hexagonal closed packed core (denoted as Au21 hcp ), and the other one with a face‐centered cubic core (denoted as Au21 fcc ). The structural and electronic analysis on the typical Au–Au and Au–S bond distances, bond orders, composition of the frontier orbitals and the origin of optical absorptions shed light on the inherent correlations between these two clusters.  相似文献   

5.
Decreasing the core size is one of the best ways to study the evolution from AuI complexes into Au nanoclusters. Toward this goal, we successfully synthesized the [Au18(SC6H11)14] nanocluster using the [Au18(SG)14] (SG=L ‐glutathione) nanocluster as the starting material to react with cyclohexylthiol, and determined the X‐ray structure of the cyclohexylthiol‐protected [Au18(C6H11S)14] nanocluster. The [Au18(SR)14] cluster has a Au9 bi‐octahedral kernel (or inner core). This Au9 inner core is built by two octahedral Au6 cores sharing one triangular face. One transitional gold atom is found in the Au9 core, which can also be considered as part of the Au4(SR)5 staple motif. These findings offer new insight in terms of understanding the evolution from [AuI(SR)] complexes into Au nanoclusters.  相似文献   

6.
The weak photoluminescence of silver nanoclusters prevents their broad application as luminescent nanomaterials. Recent experiments, however, have shown that gold doping can significantly enhance the photoluminescence intensity of Ag29 nanoclusters but the molecular and physical origins of this effect remain unknown. Therefore, we have computationally explored the geometric and electronic structures of Ag29 and gold‐doped Ag29?xAux (x=1–5) nanoclusters in the S0 and S1 states. We found that 1) relativistic effects that are mainly due to the Au atoms play an important role in enhancing the fluorescence intensity, especially for highly doped Ag26Au3, Ag25Au4, and Ag24Au5, and that 2) heteronuclear Au?Ag bonds can increase the stability and regulate the fluorescence intensity of isomers of these gold‐doped nanoclusters. These novel findings could help design doped silver nanoclusters with excellent luminescence properties.  相似文献   

7.
Structural isomerism allows the correlation between structures and properties to be investigated. Unfortunately, the structural isomers of metal nanoparticles are rare and genuine structural isomerism with distinctly different kernel atom packing (e.g., face‐centered cubic (fcc) vs. non‐fcc) has not been reported until now. Herein we introduce a novel ion‐induction method to synthesize a unique gold nanocluster with a twist mirror symmetry structure. The as‐synthesized nanocluster has the same composition but different kernel atom packing to an existing gold nanocluster Au42(TBBT)26 (TBBT=4‐tert‐butylbenzenethiolate). The fcc‐structured Au42(TBBT)26 nanocluster shows more enhanced photoluminescence than the non‐fcc‐structured Au42(TBBT)26 nanocluster, indicating that the fcc‐structure is more beneficial for emission than the non‐fcc structure. This idea was supported by comparison of the emission intensity of another three pairs of gold nanoclusters with similar compositions and sizes but with different kernel atom packings (fcc vs. non‐fcc).  相似文献   

8.
The interactions between a size‐expanded Guanine analogue x‐Guanine (xG) and gold nanoclusters, Aun (n = 2, 4, 6, and 8), were studied theoretically using density functional theory. Geometries of neutral complexes were optimized using the B3LYP functional with the 6‐31+G(d,p) basis set for xG and the LANL2DZ basis set for gold clusters. The binding modes, interaction strength, and the charge‐transfer properties of different Aun‐xG complexes were investigated. Natural population analysis was performed for natural bond order charges. It was found that gold nanoclusters form stable complexes with xG and these binding results in a substantial amount of electronic charge being transferred from xG to the gold clusters. The vertical first ionization potential, electron affinity, Fermi Level, and the HOMO–LUMO gap of xG and its complexes with gold nanoclusters were also analyzed. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
《中国化学》2018,36(7):639-643
Two types of CeO2 nanocubes (average size of 5 and 20 nm, respectively) prepared via the hydrothermal process were selected to load gold species via a deposition‐precipitation (DP) method. Various measurements, including X‐ray diffraction (XRD), Raman spectra, high resolution transmission electron microscopy (HRTEM), in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and temperature‐programmed reduction by hydrogen (H2‐TPR), were applied to characterize the catalysts. It is found that the sample with ceria size of 20 nm (Au/CeO2‐20) was covered by well dispersed both Au3+ and Auδ+ (0 < δ < 1). For the other sample with ceria size of 5 nm (Au/CeO2‐5), Au3+ is the dominant gold species. Au/CeO2‐20 performed better catalytic activity for CO oxidation because of the strong CO adsorption of Auδ+ in the catalysts. The catalytic activity of Au/CeO2‐5 was improved due to the transformation of Au3+ to Auδ+. Based on the CO oxidation and in situ DRIFTS results, Auδ+ is likely to play a more important role in catalyzing CO oxidation reaction.  相似文献   

10.
The structural features that render gold nanoclusters intrinsically fluorescent are currently not well understood. To address this issue, highly fluorescent gold nanoclusters have to be synthesized, and their structures must be determined. We herein report the synthesis of three fluorescent Au24(SR)20 nanoclusters (R=C2H4Ph, CH2Ph, or CH2C6H4tBu). According to UV/Vis/NIR, differential pulse voltammetry (DPV), and X‐ray absorption fine structure (XAFS) analysis, these three nanoclusters adopt similar structures that feature a bi‐tetrahedral Au8 kernel protected by four tetrameric Au4(SR)5 motifs. At least two structural features are responsible for the unusual fluorescence of the Au24(SR)20 nanoclusters: Two pairs of interlocked Au4(SR)5 staples reduce the vibration loss, and the interactions between the kernel and the thiolate motifs enhance electron transfer from the ligand to the kernel moiety through the Au?S bonds, thereby enhancing the fluorescence. This work provides some clarification of the structure–fluorescence relationship of such clusters.  相似文献   

11.
Treatment of the (isocyanide)gold(I) species LAuCl (L=tBuNC, 2,6‐Me2C6H3NC) with 4‐mercaptobenzoic acid in the presence of NaOMe yields the complexes [Au(4‐SC6H4CO2H)L] in good yield. Reaction of LAuCl with 2‐HSQn (Qn=quinoline) and 2‐HSPy (Py=pyridine) under the same conditions provides the thiolato compounds [Au(2‐SQn)L] and [Au(2‐SPy)L], respectively. A structural investigation of the pyridylthiolato compound revealed chains of molecules with alternating medium and long Au−Au interactions. Treatment of this compound with HBF4 results in the cationic species [Au(2‐HSPy)(2,6‐Me2C6H3NC)]+ as the BF4 salt. The same product is obtained on reaction of [AuCl(2,6‐Me2C6H3NC)] with AgOTf followed by HSPy. Treatment of the gold(I) halide compounds LAuCl (L=tBuNC, 2,6‐Me2C6H3NC) with potassium 1,3,4‐thiadiazole‐2,5‐dithiolate (KSSSK) leads to the isolation of dinuclear thiolatogold complexes [(AuL)2(SSS)]. These products go on to form insoluble polymers through loss of isocyanide on standing in solution. A single crystal of [{Au(tBuNC)}2(SSS)] was obtained and the subsequent structural analysis revealed one of the most complicated networks known based solely on aurophilic interactions. A good comparison to the ‘soft' S‐donation of the thiolato ligands was provided by the synthesis of a number of nitratogold(I)complexes with the anion bound through the ‘hard' O‐donor. Reaction of iPrNC and CyNC with Au(tht)Cl provided the complexes [AuCl(iPrNC)] and [AuCl(CyNC)], respectively. These compounds were found to yield the respective nitrato species [Au(NO3)iPrNC)] and [(Au(NO3)(CyNC)] on treatment with AgNO3. The nitrato complexes yielded single crystals enabling a structural investigation to be carried out. While [Au(NO3)(CyNC)] has a more conventional structure with dimers aligned into strings with alternating short and long aurophilic bonding, [Au(NO3)(iPrNC)] has a unique structure based on strings of alternating, corner‐sharing Au6 and Au8 units with short Au−Au contacts in edge‐sharing Au3 triangles.  相似文献   

12.
The concept of aggregation‐induced emission (AIE) has been exploited to render non‐luminescent CuISR complexes strongly luminescent. The CuISR complexes underwent controlled aggregation with Au0. Unlike previous AIE methods, our strategy does not require insoluble solutions or cations. X‐ray crystallography validated the structure of this highly fluorescent nanocluster: Six thiolated Cu atoms are aggregated by two Au atoms (Au2Cu6 nanoclusters). The quantum yield of this nanocluster is 11.7 %. DFT calculations imply that the fluorescence originates from ligand (aryl groups on the phosphine) to metal (CuI) charge transfer (LMCT). Furthermore, the aggregation is affected by the restriction of intramolecular rotation (RIR), and the high rigidity of the outer ligands enhances the fluorescence of the Au2Cu6 nanoclusters. This study thus presents a novel strategy for enhancing the luminescence of metal nanoclusters (by the aggregation of active metal complexes with inert metal atoms), and also provides fundamental insights into the controllable synthesis of highly luminescent metal nanoclusters.  相似文献   

13.
An atomic‐level strategy is devised to gain insight into the origin of nanogold catalysis by using atomically monodisperse Aun(SR)m nanoclusters as well‐defined catalysts for styrene oxidation. The Aun(SR)m nanoclusters are emerging as a new class of gold nanocatalyst to overcome the polydispersity of conventional nanoparticle catalysts. The unique atom‐packing structure and electronic properties of Aun(SR)m nanoclusters (<2 nm) are rationalized to be responsible for their extraordinary catalytic activity observed in styrene oxidation. An interesting finding is that quantum size effects of Aun(SR)m nanoclusters, rather than the higher specific surface area, play a major role in gold‐catalyzed selective oxidation of styrene. For example, Au25(SR)18 nanoclusters (≈1 nm) are found to be particularly efficient in activating O2, which is a key step in styrene oxidation, and hence, the ultrasmall Au25 catalyst exhibits higher activity than do larger sizes. This atomic‐level strategy has allowed us to obtain an important insight into some fundamental aspects of nanogold catalysis in styrene oxidation. The ultrasmall yet robust Aun(SR)m nanoclusters are particularly promising for studying the mechanistic aspects of nanogold catalysis and for future design of better catalysts with high activity and selectivity for certain chemical processes.  相似文献   

14.
It is well known that alkynes act as π‐acids in the formation of complexes with metals. We found unprecedented attractive Au–π interactions in diacetylene‐modified [core+exo]‐type [Au8]4+ clusters. The 4‐phenyl‐1,3‐butadiynyl‐modified cluster has unusually short Au–Cα distances in the crystal structure, revealing the presence of attractive interactions between the coordinating C≡C moieties and the neighboring bitetrahedral Au6 core, which is further supported by IR and NMR spectra. Such weak interactions are not found in mono‐acetylene‐modified clusters, which indicates that they are specific for diacetylenic ligands. The attractive Au–π interactions are likely associated with the low energy of the π* orbital in the diacetylenic moieties, into which the valence electrons of the gold core may be back donated. The [Au8]4+ clusters show clear red‐shifts of >10 nm with respect to the corresponding mono‐acetylenic clusters in UV/Vis absorption bands, which indicates substantial electronic perturbation effects of the Au–π interactions.  相似文献   

15.
Dimethyl 5‐aminoisophthalate, which is a building block of amino‐substituted tetralactam macrocycles, was used as ligand in gold(I) chemistry to form model complexes for macrocyclic gold compounds. Reaction of dimethyl 5‐aminoisophthalate with chlorodiphenylphosphine gave the diphosphine compound dimethyl 5‐[N,N‐bis(diphenylphosphanyl)amino]isophthalate (dmbpaip). This compound can further be reacted with [AuCl(tht)] (tht = tetrahydrothiophene) to give the dinuclear complex [Au2Cl2(dmbpaip)]. In contrast, treatment of dmbpaip with [Au(tht)2]ClO4 resulted in the ionic compound [Au2(dmbpaip)2](ClO4)2 in which the cation forms an eight‐membered Au2P4N2 heterocycle. In both gold(I) compounds Au···Au interactions are observed. All new compounds were characterized by single‐crystal X‐ray diffraction.  相似文献   

16.
Aggregation‐induced emission (AIE) provides an efficient strategy to synthesize highly luminescent metal nanoclusters (NCs), however, rational control of emission energy and intensity of metal NCs is still challenging. This communication reveals the impact of surface AuI‐thiolate motifs on the AIE properties of Au NCs, by employing a series of water‐soluble glutathione (GSH)‐coordinated Au complexes and NCs as a model ([Au10SR10], [Au15SR13], [Au18SR14], and [Au25SR18]?, SR=thiolate ligand). Spectroscopic investigations show that the emission wavelength of Au NCs is adjustable from visible to the near‐infrared II (NIR‐II) region by controlling the length of the AuI‐SR motifs on the NC surface. Decreasing the length of AuI‐SR motifs also changes the origin of cluster luminescence from AIE‐type phosphorescence to Au0‐core‐dictated fluorescence. This effect becomes more prominent when the degree of aggregation of Au NCs increases in solution.  相似文献   

17.
The electronic structure and the spectroscopic properties of [Au2(CS3)2]?2, [Au2(pym‐2‐S)2] (pym = pyrimidethiolate), [Au2(dpm)2]+2 (dpm = bis(diphosphino)methane) were studied using density functional theory (DFT) at the B3LYP level. The absorption spectrum of these binuclear gold(I) complexes was calculated by single excitation time‐dependent (TD) method. All complexes showed a 1(5dσ* → 6pσ) transition associated with a metal–metal charge transfer, which is strongly interrelated with the gold–gold distance. Furthermore, we have calculated the frequency of the gold–gold vibration (νAu2) on the above complexes. The values obtained are theoretically in agreement with experimental range. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

18.
The synthesis and structure of atomically precise Au130?xAgx (average x=98) alloy nanoclusters protected by 55 ligands of 4‐tert‐butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag‐rich sites is found, which is enclosed by a Marks decahedral cage of Au‐rich sites. The surface is exclusively Ag?SR; X‐ray absorption fine structure analysis supports the absence of Au?S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non‐plasmon nature. The non‐metallicity of the Au130?xAgx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic‐level insights into the Au?Ag bonds in bimetallic nanoclusters.  相似文献   

19.
Bright, near-infrared electrochemiluminescence (NIR–ECL) of Au18 nanoclusters is reported herein. Spooling ECL and photoluminescence spectroscopy were used to track and link NIR emissions at 832 and 848 nm to three emissive species, Au180*, Au181+* and Au182+*, with a considerably high ECL efficiency of 5.5 relative to that of the gold standard Ru(bpy)32+/TPrA (with 5–6 % reported ECL efficiency). The unprecedentedly high efficiency is due to the overlapped oxidation potentials of Au180 and tri-n-propylamine as co-reactant, the exposed facets of Au180 gold core, and electrocatalytic loops. These discoveries will add a new member to the efficient NIR-ECL gold nanoclusters family and bring more potential applications.  相似文献   

20.
Kernel atoms of Au nanoclusters are packed layer‐by‐layer along the [001] direction with every full (001) monolayer composed of 8 Au atoms (Au8 unit) in nanoclusters with formula of Au8n+4(TBBT)4n+8 (n is the number of Au8 units; TBBTH=4‐tert‐butylbenzenelthiol). It is unclear whether the kernel atoms can be stacked in a defective‐layer way along the [001] direction during growth of the series of nanoclusters and how the kernel layer number affects properties. Now, a nanocluster is synthesized that is precisely characterized by mass spectrometry and single‐crystal X‐ray crystallography, revealing a layer stacking mode in which a half monolayer composed of 4 atoms (Au4 unit) is stacked on the full monolayer along the [001] direction. The size and the odevity of the kernel layer number influence the properties (polarity, photoluminescence) of gold nanoclusters. The obtained nanocluster extends the previous formula from Au8n+4(TBBT)4n+8 to Au4n+4(TBBT)2n+8 (n is the number of Au4 units).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号