首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic silica nanoparticles surface-functionalized by 3-aminopropyltriethoxysilane (APTES) and octyltriethoxylsilane (OTES) were successfully prepared and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR) and thermogravimetry (TG) techniques. The potential use of these bifunctionalized nanoparticles as pseudostationary phases (PSPs) in capillary electrophoresis (CE) for the separation of charged and neutral compounds was evaluated in terms of their suitability. As expected, fast separation of representative aromatic acids was fulfilled with high separation efficiency, because they migrate in the same direction with the electroosmotic flow (EOF) under optimum experimental conditions. Using a buffer solution of 30mmol/L phosphate (pH 3.0) in the presence of 0.5mg/mL of the synthesized bifunctionalized nanoparticles, the investigated basic compounds were baseline-resolved with symmetrical peaks. Due to the existence of amino groups on the surface of nanoparticles, "silanol effect" that occurs between positively charged basic analytes and the silanols on the inner surface of capillary was greatly suppressed. Furthermore, the separation systems also exhibited reversed-phase (RP) behavior when neutral analytes were tested.  相似文献   

2.
Dong X  Dong J  Ou J  Zhu Y  Zou H 《Electrophoresis》2006,27(12):2518-2525
A polymer-based neutral monolithic capillary column was prepared by radical polymerization of glycidyl methacrylate and ethylene dimethacrylate in a 100 mum id fused-silica capillary, and the prepared monolithic column was subsequently modified based on a ring opening reaction of epoxide groups with 1 M lysine in solution (pH 8.0) at 75 degrees C for 10 h to produce a lysine chemically bonded stationary phases in capillary column. The ring opening reaction conditions were optimized so that the column could generate substantial EOF. Due to the zwitterionic functional groups of the lysine covalently bonded on the polymer monolithic rod, the prepared column can generate cathodic and anodic EOF by varying the pH values of running buffer during CEC separation. EOF reached the maximum of -2.0 x 10(-8) m2v(-1)s(-1) and 2.6 x 10(-8) m2v(-1)s(-1) with pH of the running buffer of 2.25 and 10, respectively. As a consequence, neutral compounds, ionic solutes such as phenols, aromatic acids, anilines, and basic pharmaceuticals were all successfully separated on the column by CEC. Hydrophobic interaction is responsible for separation of neutral analytes. In addition, the electrostatic and hydrophobic interaction and the electrophoretic migration play a significant role in separation of the ionic or ionizable analytes.  相似文献   

3.
通过γ-巯丙基三甲氧基硅烷(KH-590)的作用, 将具有抗菌功能的中草药厚朴的主要药用成分厚朴酚键合在硅胶表面上, 制备了厚朴酚键合硅胶液相色谱固定相. 采用红外光谱、元素分析和热重分析对该固定相进行了表征. 以苯同系物、5种吡啶、6种苯胺和8种芳香羧酸类化合物为溶质探针, 初步考察了该新型固定相的基本色谱性能, 研究了其对这些化合物的保留机理. 结果表明, 该固定相的反相色谱性能类似于十八烷基键合硅胶固定相(ODS), 分离原理与疏水性作用有关; 另外, 该固定相包含有别于疏水性作用的氢键作用、π-π电荷转移作用和偶极-偶极等作用, 多种作用力使其在分离某些可电离的碱性和酸性化合物时表现出更好的选择性和分离效果. 厚朴酚配体的多种作用位点对快速分离极性芳香化合物有重要贡献.  相似文献   

4.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

5.
陈霞  韦誉  陆俊宇  张爱珠  叶芳贵  赵书林 《分析化学》2012,40(10):1584-1588
基于十八烷基硫醇与乙烯基功能化毛细管(Vinyl capillary)的硫醇-烯点击化学反应,制备了一种新型的C18毛细管电色谱开管柱(C18capillary).采用乙烯基三甲氧基硅烷对毛细管内壁进行乙烯基功能化,然后通过硫醇-烯点击化学反应共价键合十八烷基硫醇于Vinyl capillary内表面.采用环境扫描电镜对C18 capillary进行了形貌表征.考察了缓冲溶液pH值对C18 capillary、Vinyl capillary和裸毛细管柱(Bare capillary)电渗流的影响.结果表明;在相同实验条件下,C18capillary的电渗流最小.以3种多环芳烃为模型化合物,评价了C18capillary的电色谱柱性能;同时考察了模型化合物在C18capillary上的电色谱保留行为.实验表明,其保留机理是基于典型的反相作用.当C18 capillary用于碱性模型化合物分离时,碱性物质在C18 capillary上的峰形较好,无明显的峰拖尾现象,这可能是由于C18capillary表面含有极性的S基团能够屏蔽残留硅羟基对碱性化合物的吸附作用.  相似文献   

6.
A new capillary electrochromatography (CEC) column for the simultaneous analysis of cationic, neutral, and anionic compounds using CEC-ESI-MS is described. Three different silica monolith columns were prepared by changing the poly(ethylene glycol) (PEG) contents for comparison of the separation property of these columns. Different separation programs were used for the simultaneous separation of different charged compounds under the same conditions. The column prepared with 80 mg of PEG separated typical compounds within 15 min using 1 M formic acid as the electrolyte. The analytes migrated in the order of cationic, neutral, and anionic compounds, which means that the migration order was mainly determined by the electrophoresis. The hydrodynamic flow by pressure from the inlet side was significant for a stable analysis to be achieved. The effect of the composition of the sheath liquid was also examined. All analytes (14 amino acids, thiourea, urea, citric acid, and ATP) were detectable when 1% acetic acid in 50% (v/v) methanol was used as the sheath liquid.  相似文献   

7.
Tábi T  Magyar K  Szöko E 《Electrophoresis》2005,26(10):1940-1947
A capillary electrophoresis method has been developed for the simultaneous analysis of the oxidized, nitrated, and chlorinated aromatic amino acids, as well as their parent compounds. These modifications of the aromatic amino acids in proteins or free form are induced by the attack of reactive, mainly free radical species generated during cell stress, and these stable products may serve as biomarkers of cell damage. The analytes tyrosine, phenylalanine, dihydroxyphenylalanine, tryptophan, 3-nitrotyrosine, 3-chlorotyrosine, ortho-tyrosine, meta-tyrosine, 3-hydroxyphenylacetic acid (internal standard 1), and alpha-methyltyrosine (internal standard 2) were separated in their anionic forms in alkaline borate buffer. The polyamine spermine was used as electroosmotic flow (EOF) modifier. Adsorbing to the capillary wall, spermine can either suppress or even reverse the EOF depending on its concentration and the pH. The effects of the pH of the separation buffer, the spermine concentration, the temperature, and the applied field strength on the separation were examined. The modified aromatic amino acids are present in biological fluids in a much lower concentration than their parent compounds, thus high detection sensitivity of the analytical method is required. To achieve good detection sensitivity, field-amplified sample stacking of large injection volumes was applied. Omitting polyamine from the sample buffer allowed local reversal of the EOF, thus removal of the low conductivity sample buffer at the capillary inlet. In this way, 100% of the capillary to the detection window could be filled with the sample, and the detection limits achieved for the modified aromatic amino acids were in the range of 2.5-10 nM.  相似文献   

8.
A multi‐functional separation column modified with 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane was developed for open tubular capillary electrochromatography. This functional hydrophilic triamine‐bonded open tubular column could generate both anodic and cathodic EOF. When the pH of the running buffer was below 5.3 (30% 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane, v/v), the anodic EOF was exhibited, which greatly prevented the undesired adsorptions of basic proteins on the capillary inner wall. Favorable separation of four basic proteins (viz. trypsin, ribonuclease A, lysozyme and cytochrome c) was successfully achieved at pH 3.5 of 10 mmol/L phosphate buffer. The column efficiencies of proteins were in the range from 87 000 to 110 000 plates/m, and the RSD values for migration time of four proteins were less than 1.2% (run‐to‐run, n=5). The ionic analytes were also separated efficiently in the co‐electroosmotic mode. The average efficiencies ranged from 81 000 to 190 000 plates/m for seven aromatic acids and 186 000–245 000 plates/m for four nucleoside monophosphates, respectively, and good capillary column repeatability was gained with RSD of the migration time not more than 3.0%. The triamine‐bonded open tubular capillary column is favorable to be an alternative functional medium for the further analysis of basic proteins and anionic analytes.  相似文献   

9.
Li Y  Liu Q  Yao S 《Talanta》2008,75(3):677-683
The cationic double-chained surfactant didodecyldimethylammonium bromide (DDAB) was used as pseudostationary phase (PSP) in micellar electrokinetic capillary chromatography (MEKC). Its performance on the three kinds of drugs, i.e., basic, acidic, and neutral drugs, was systematically investigated. Nicotine, cotinine, caffeine, lidocaine, and procaine were selected as the model basic drugs. Good baseline separation and high efficiency were obtained under the optimal separation condition that consisted of 50mM phosphate (pH 4.0) and 0.08 mM DDAB. Three basic phenylenediamine isomers can also be well separated with DDAB in buffer. In addition, DDAB can form cationic bilayer on the capillary wall, thus the wall adsorption of basic analytes was greatly suppressed. Compared with commonly used CTAB, the separation of basic drugs was significantly improved with a much lower amount of DDAB present in the buffer. The DDAB-involved MEKC also showed superiority to CTAB upon the separation of acidic drugs, amoxicillin and ampicillin. In the case of neutral compounds, a good separation of resorcinol, 1-naphthol and 2-naphthol was achieved with 0.1mM DDAB and 30% (v/v) acetonitrile (ACN) present in buffer. Hence, it was concluded that the double-chained cationic surfactant DDAB can be a good substitute for traditional single-chained surfactant CTAB in MEKC.  相似文献   

10.
卤代乙酸及其结构相近化合物的高效毛细管电泳分离   总被引:2,自引:0,他引:2  
关福玉  吴惠芳  罗毅 《色谱》1996,14(2):134-136
氟、氯、溴等卤代乙酸是结构非常相近的离子型化合物,对它们的分离测定比较困难。用高效毛细管电泳法在碱性或酸性缓冲液条件下可将它们分离。在酸性缓冲液条件下,可提高有机酸分离的选择性。较低的操作电压有利于提高阴离子的分离度,而改变温度对分离度的影响不大。  相似文献   

11.
Summary Two modes of capillary electrophoresis (CE), capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC), were investigated for the separation of 12 aromatic sulphonate compounds. In CZE, although the voltage applied, the buffer concentration and the pH were optimized for effective separation of the compounds studied, under the best conditions four of the five amino compounds coeluted, as did naphthalene-1-sulphonic acid and naphthalene-2-sulphonic acid. In MEKC, sodium dodecyl sulphate (SDS) and Brij 35 were chosen as the anionic and nonionic surfactants and the effect of the concentration of micelles was examined. The effect of adding methanol as the organic modifier was also investigated with each of these micellar systems. All the analytes, including the isomers, were completely separated by use of MEKC with Brij 35 but when SDS was used only 11 compounds were separated because two amino compounds coeluted.  相似文献   

12.
We present here the application of graphene oxide (GO) and reduced graphene oxide (GOOH) sheet as novel stationary phases for open‐tubular CEC (OTCEC) separation based on electrostatic assembly. The inner walls of a bare capillary column was first modified by ionic assembly of poly (diallyldimethylammonium chloride) (PDDA), and then negatively charged GO or GOOH was easily assembled on a positively charged interior walls of the capillary by electrostatic force. Scanning Electron Microscope images showed that GO and GOOH can still maintain sheet‐layer‐like structure when coated onto the capillary via electrostatic assembly. The chromatographic properties of the GO and GOOH coated columns were evaluated via OTCEC separations of various kinds of analytes, including three acid nitrophenol isomers, three basic nitroaniline isomers, and four neutral PAHs. Efficient separations of all the analytes were achieved with optimized buffer pH and organic additive. The reproducibility and stability of the GO or GOOH coated columns were investigated. Our results indicate the capability of application GO or GOOH sheet in OTCEC separation, which can be coated on the inner wall of fused‐silica capillary via electrostatic assembly.  相似文献   

13.
The influence of Joule heating on electroosmotic flow velocity, the retention factor of neutral analytes, and separation efficiency in capillary electrochromatography was investigated theoretically and experimentally. A plot of electrical current against the applied electrical field strength was used to evaluate the Joule heating effect. When the mobile phase concentration of Tris buffer exceeded 5.0 mM in the studied capillary electrochromatography systems using particulate and monolithic columns (with an accompanying power level of heat dissipation higher than 0.35 W/m), the Joule heating effect became clearly noticeable. Theoretical models for describing the variation of electroosmotic flow velocity with increasing applied field strength and the change of retention factors for neutral analytes with electrical field strength at higher Tris buffer concentrations were analyzed to explain consequences of Joule heating in capillary electrochromatography. Qualitative agreement between experimental data and implications of the theoretical model analysis was observed. The decrease of separation efficiency in capillary electrochromatography with macroporous octadecylsilica particles at high buffer concentration can be also attributed to Joule heating mainly via the increased axial diffusion of the analyte molecules and dispersion of solute bands by a nonuniform electroosmotic flow profile over the column cross-section. However, within a moderate temperature range, the contribution of the macroscopic velocity profile in the column arising from radial temperature gradients is insignificant.  相似文献   

14.
A novel desalting method, using a column switching technique and a volatile ion-pairing reagent, pentadecafluorooctanoic acid, was developed. This system allows hydrophilic and cationic compounds in a nonvolatile buffer to be directly introduced into a mass spectrometer for structural elucidation. The desalting procedure consists of four steps: (1) the fractionation of a target compound from a separation column, (2) the removal of salts with pentadecafluorooctanoic acid on the trap column, (3) the desorption of the compound from the trap column, and (4) the re-equilibration of the trap column with a pentadecafluorooctanoic acid solution. In this procedure, we investigated the methods for optimizing the desalting and re-equilibration steps. Various amino acids, including branched chain amino acids, aromatic amino acids, basic amino acids and methionine, after separation with phosphate buffer on a cation-exchange column, were successively desalted by this method, and were observed as protonated ions by mass spectrometry. This desalting system could be useful for the structural elucidation of unknown hydrophilic compounds eluted by conventional high-performance liquid chromatography methods, such as ion-exchange chromatography, with mobile phases containing nonvolatile salts. As an example, we present the structural elucidation of unknown metabolites in bovine serum.  相似文献   

15.
瞿其曙  周瑜  彭生微  胡效亚  阎超 《色谱》2010,28(3):260-263
制备了1 μm无孔硅胶颗粒。通过电动填充法得到总长度为45 cm(固定相填充长度为20 cm)、内径为100 μm的毛细管色谱柱。以乙腈-水体系作为流动相,详细考察了碱性化合物在该色谱柱上的加压电色谱(pCEC)分离性能,讨论了流动相比例、缓冲液浓度、pH值及操作电压等因素对分离的影响。实验结果表明,裸硅胶柱在乙腈-水体系分离碱性样品中表现出典型的反相色谱分离性能;缓冲液浓度的改变则对分离影响不大。当pH值改变时,碱性化合物的解离程度发生变化,它们与固定相之间的作用力发生变化,使得分离度发生相应的变化。分离柱效随施加电压的增加而增加,在1 kV电压下,裸硅胶柱对邻甲苯胺的柱效为35000理论塔板/m。  相似文献   

16.
An imidazole-coated capillary column for electrophoresis has been prepared by means of organosilanization. With mesityl oxide as neutral marker, the results indicated that the electroosmotic flow of the bonded phase displays a dramatic difference in pH dependence in comparison with that of the bare fused-silica column. The presence of positive charges on the coating surface and the anionic exchange property, due to the cationic property of the imidazole group at pH values below 6, allows the separation of geometric isomers that are very similar in ionic mobility. Separation parameters including buffer composition and concentration, pH, applied voltage, and the influence of other additives were investigated. By using acetate buffer (100 mM, pH 5.2) and an applied voltage of -15 kV with UV detection at 212 nm, the separation of 11 aromatic acids including mono-, di-, tri- and tetra-carboxylic acids could be achieved in less than 14 min. The average plate number was 3 x 10(5)/m. With acetate buffer (25 mM, pH 5.5) and an applied voltage of -25 kV, the addition of silver nitrate or beta-cyclodextrin significantly improved the resolution of some more highly charged carboxylic acids.  相似文献   

17.
Ding G  Da Z  Yuan R  Bao JJ 《Electrophoresis》2006,27(17):3363-3372
A silica-based CEC monolithic column with mixed modes of RP and weak anion-exchange (WAX) was successfully prepared by using the sol-gel technique at mild temperature. The synthesizing procedure was optimized by changing the ratios of tetraethoxysilane (TEOS), aminopropyltriethoxysilane (APTES), and octyltriethoxysilane (C(8)-TEOS) in the mixture. While serving as WAX group, the amino group dominated the charge on the surface of the capillary column and generated an EOF from cathode to anode at low pH. At pH above 7.5, a cathodic EOF was observed due to the full ionization of silanol group and the suppression in the ionization of amino group. The morphology of monolithic columns was examined by SEM, and the performance of column was evaluated in detail by separating different kinds of compounds. As expected, the monolithic column exhibited RP chromatographic behavior for neutral solutes. Fast and efficient separation of six aromatic acids was obtained using acidic mobile phase with column efficiency up to 160,000 plates/m. Symmetrical peaks can be obtained for aromatic amines because positively charged amino groups on the surface can effectively minimize the adsorption of positively charged analytes to the stationary phase.  相似文献   

18.
《Electrophoresis》2018,39(2):363-369
Pillar[n]arenes have achieved much interest in material chemistry and supramolecular chemistry due to unusual pillar shape structure and high selectivity toward guest. However, pillar[n]arenes have not yet been applied in capillary electrochromatography. This work at first time reports that carboxylatopillar[5]arene is used as a stationary phase in open‐tubular capillary electrochromatography. Carboxylatopillar[5]arene not only possess the advantages of pillar[n]arenes but also provide free carboxy groups for immobilizing on the inner wall of capillary column via covalent bonding. The characterization of SEM and FT‐IR indicated that carboxylatopillar[5]arene was successfully grafted on the inner wall of capillary. The baseline separation of model analytes including neutral, basic, and acidic compounds, nonsteroidal anti‐inflammatory drugs and dansyl‐amino acids have been achieved thanks to the electron‐rich cavity of carboxylatopillar[5]arene and hydrophobic interactions between the analytes and stationary phase. The intraday, interday, and column‐to‐column precisions (RSDs) of retention time and peak area for the neutral analytes were all less than 3.34 and 9.65%, respectively. This work indicates that pillar[n]arenes have great potential in capillary electrochromatography as novel stationary phase.  相似文献   

19.
A macroporous, spherical, 7 μm, polystyrene–divinylbenzene (PS–DVB), reversed-phase adsorbent (PRP-1) was evaluated as a stationary phase for the capillary electrochromatographic (CEC) separation of neutral, acidic, and basic analytes of pharmaceutical interest. Electroosmotic flow (EOF) for a PRP-1 packed capillary is nearly constant over the pH 2 to 10 range and is higher than for a silica-based C18 packed capillary on the acidic side. EOF increases with an increase in buffer acetonitrile concentration or as applied potential increases. As analyte hydrophobicity increases, analyte retention and migration time increases. Increasing buffer acetonitrile concentration reduces analyte partitioning with the PS–DVB stationary phase and analyte retention and migration time decreases. When exchange sites are present on the PS–DVB copolymer, EOF (EOF is reversed for the anion-exchanger) increases as the exchange capacity increases. An increased exchange capacity also reduces partitioning of the analyte with the PS–DVB matrix and analyte retention and migration time decrease. Because of excellent stability in an acid environment, the PRP-1 packed capillary can be used in strong acid buffer solution and weak acid and base analytes depending on pKa values can be separated as neutral species and cations, respectively. CEC separations on a PRP-1 capillary of neutral steroids, weak base pharmaceuticals (separation as cations), purines and pyrimidines (as cations), fatty acids (as undissociated species), and sulfa derivatives (as cations) are described. Efficiency for the PRP-1 packed capillary for acetone or thiourea as the analyte is about 6·104 plates m−1.  相似文献   

20.
毛细管硅胶基质整体柱的制备及其电色谱性能研究   总被引:3,自引:0,他引:3  
邵华  邓启良  伦志红  阎超  高如瑜 《色谱》2005,23(3):243-246
采用热引发一步法制备了毛细管电色谱硅胶基质整体柱。通过使用表面活性剂(十二烷基磺酸钠)增加了反应液中两相之间的相互溶解,使得反应液最终成为均相溶液,实现了硅胶整体柱的均相聚合制备。所制备的均相硅胶整体柱内部结构更加均匀,大大提高了分离度。评价了该整体柱的电色谱性能,深入探讨了有机溶剂比例、pH值、电压以及温度等电色谱操作条件对电渗流、保留机理和柱效的影响。在该均相硅胶基质整体柱上成功地分离了9种中性物质(硫脲、苯、甲苯、乙基苯、正丙苯、萘、正丁基苯、芴和蒽)以及7种中性、酸性和碱性物质(硫脲、邻氨基酚、苯酚、苯、邻甲苯胺、α-萘胺和2,4-二氯苯胺)。该柱对硫脲的柱效超过110000塔板/m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号