首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, modified von Kármán equations are derived for Kirchhoff nanoplates with surface tension and surface tension-induced residual stresses. The simplified Gurtin-Murdoch model which does not contain non-strain displacement gradients in surface stress-strain relations is adopted, so that the von Kármán strain-compatibility equation can be expressed in terms of the stress function and deflection. The modified von Kármán equations derived here are different than the existing related models especially for elastic plates with in-plane movable edges. Unlike the existing models which predict a surface tension-induced tensile pre-stress for an elastic plate with in-plane movable edges, the present model predicts that this tensile pre-stress is actually cancelled by the surface tension-induced residual compressive stress. Our this result is consistent with recent clarification on similar issue for cantilever beams with surface tension, which implies that the existing models have incorrectly predicted an invalid tensile pre-stress for an elastic plate with in-plane movable edges which leads to significant overestimation of postbuckling load and free vibration frequencies. In addition, our numerical examples indicated that surface stresses can moderately increase or decrease postbuckling load and free vibration frequency of Kirchhoff nanoplate with all in-plane movable edges, depending on the surface elasticity parameters and the geometrical dimensions of nanoplates.  相似文献   

2.
We derive an optimal scaling law for the energy of thin elastic films under isotropic compression, starting from three-dimensional nonlinear elasticity. As a consequence we show that any deformation with optimal energy scaling must exhibit fine-scale oscillations along the boundary, which coarsen in the interior. This agrees with experimental observations of folds which refine as they approach the boundary. We show that both for three-dimensional elasticity and for the geometrically nonlinear Föppl-von Kármán plate theory the energy of a compressed film scales quadratically in the film thickness. This is intermediate between the linear scaling of membrane theories which describe film stretching, and the cubic scaling of bending theories which describe unstretched plates, and indicates that the regime we are probing is characterized by the interplay of stretching and bending energies. Blistering of compressed thin films has previously been analyzed using the Föppl-von Kármán theory of plates linearized in the in-plane displacements, or with the scalar eikonal functional where in-plane displacements are completely neglected. The predictions of the linearized plate theory agree with our result, but the scalar approximation yields a different scaling.  相似文献   

3.
We consider the von Kármán nonlinearity and the Casimir force to develop reduced-order models for prestressed clamped rectangular and circular electrostatically actuated microplates. Reduced-order models are derived by taking flexural vibration mode shapes as basis functions for the transverse displacement. The in-plane displacement vector is decomposed as the sum of displacements for irrotational and isochoric waves in a two-dimensional medium. Each of these two displacement vector fields satisfies an eigenvalue problem analogous to that of transverse vibrations of a linear elastic membrane. Basis functions for the transverse and the in-plane displacements are related by using the nonlinear equation governing the plate in-plane motion. The reduced-order model is derived from the equation yielding the transverse deflection of a point. For static deformations of a plate, the pull-in parameters are found by using the displacement iteration pull-in extraction method. Reduced-order models are also used to study linear vibrations about a predeformed configuration. It is found that 9 basis functions for a rectangular plate give a converged solution, while 3 basis functions give pull-in parameters with an error of at most 4%. For a circular plate, 3 basis functions give a converged solution while the pull-in parameters computed with 2 basis functions have an error of at most 3%. The value of the Casimir force at the onset of pull-in instability is used to compute device size that can be safely fabricated.  相似文献   

4.
In the present study, the geometrically non-linear dynamics of an axially moving plate is examined by constructing the bifurcation diagrams of Poincaré maps for the system in the sub and supercritical regimes. The von Kármán plate theory is employed to model the system by retaining in-plane displacements and inertia. The governing equations of motion of this gyroscopic system are obtained based on an energy method by means of the Lagrange equations which yields a set of second-order non-linear ordinary differential equations with coupled terms. A change of variables is employed to transform this set into a set of first-order non-linear ordinary differential equations. The resulting equations are solved using direct time integration, yielding time-varying generalized coordinates for the in-plane and out-of-plane motions. From these time histories, the bifurcation diagrams of Poincaré maps, phase-plane portraits, and Poincaré sections are constructed at points of interest in the parameter space for both the axial speed regimes.  相似文献   

5.
We study the elastic stability of infinite inhomogeneous thin plates on an elastic foundation under in-plane compression. The elastic stiffness constants depend on the coordinate variable in the thickness direction of the plate. The elastic foundation is represented as a Winkler-type model characterized by linear and nonlinear spring constants. First we derive the Föppl–von Kármán equations by taking variations of the elastic strain energy. Next we develop the linear stability analysis of the plate under uniform in-plane compression and explicitly derive the critical loads and wave numbers for particular three cases. The effects of the material inhomogeneity, material orthotropy and loading orthotropy on the critical states are examined independently. Finally, we perform a weakly nonlinear analysis of the plate at the onset of the buckling instability. With the multiple scales method, the amplitude equations for the unstable modes that provide insight into the mode type and its amplitude are derived and then the effect of the material inhomogeneity on buckling modes are evaluated qualitatively.  相似文献   

6.
Considering the adhesive effect and geometric nonlinearity, the adhesive contactbetween an elastic substrate and a clamped miniature circular plate with two different centralrigid bumps under the action of uniform transverse pressure and in-plane tensile force in theradial direction was analyzed. And an analytical solution is presented by using the perturbationmethod. The relation of surface adhesive energies with critical load to detach the contacted surfacesis obtained. In the numerical results, the effects of adhesive energy, in-plane tensile force, rigidbump size and contact radius on the critical load are discussed, and the relation of critical contactradius with the gap between the central rigid bump and the substrate for different adhesive energiesis investigated.  相似文献   

7.
We are concerned with the deformation of thin, flat annular plates under a force applied orthogonally to the plane of the plate. This mechanical process can be described via a radial formulation of the Föppl – von Kármán equations, a set of nonlinear partial differential equations describing the deflections of thin flat plates. We are able to obtain analytical solutions for the radial Föppl – von Kármán equations with boundary conditions relevant for clamped, loosely clamped, and free inner and outer. This permits us to study the qualitative behavior of the out-of-plane deflections as well as the Airy stress function for a number of cases. Provided that an appropriate non-dimensionalization is taken, we find that the perturbation solutions are surprisingly valid for a wide variety of parameters, and compare favorably with numerical simulations in all cases (rather than just for small parameters). The results demonstrate that the ratio of the inner to outer radius of the annular plate will strongly influence the properties of the solutions, as will the specific boundary data considered. For instance, one may choose to fix the plate in place with a specific set of boundary conditions, in order to minimize the out-of-plane deflections. Other boundary conditions may result in undesirable behaviors.  相似文献   

8.
The dynamic modelling of a simply-supported thin laminated plate subject to in-plane excitation is established based on the classic shear theory and von Kármán nonlinear theory. The method of multiple scales is used to determine an approximate solution for the system. According to solvability conditions, the nonlinear modulation equations arising from the principal parametric resonances are obtained and two possible nontrivial solutions are performed. To analyze the nonlinear dynamic response of the plate embedded with auxetic layers, 5-layered sandwich plate, in which two auxetic elastic layers are alternatively sandwiched between three positive Poisson’s ratio (PPR) elastic ones, is presented. The natural frequency of model (m, n) shows an increase with respect to the absolute value of Poisson’s ratio. Particularly, the amplitude-frequency responses of the laminated plate subject to principal parametric resonance are analyzed for different values of Poisson’s ratio. Moreover, it can be found that for model (m, n), there must be some certain value or interval of negative Poisson’s ratio (NPR), which, results in zero response effect, in other words, the in-plane excitation will be ineffective for this model when the Poisson’s ratio just lies at such a value or interval. Furthermore, it can also be observed that the certain interval of Poisson’s ratio becomes wider with the increase of damping.  相似文献   

9.
This paper presents an investigation on the nonlinear dynamic response of carbon nanotube-reinforced composite (CNTRC) plates resting on elastic foundations in thermal environments. Two configurations, i.e., single-layer CNTRC plate and three-layer plate that is composed of a homogeneous core layer and two CNTRC surface sheets, are considered. The single-walled carbon nanotube (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion that includes plate-foundation interaction are solved by a two-step perturbation technique. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The effects of material property gradient, the volume fraction distribution, the foundation stiffness, the temperature change, the initial stress, and the core-to-face sheet thickness ratio on the dynamic response of CNTRC plates are discussed in detail through a parametric study.  相似文献   

10.
Unified 2D continuum formulation of the nonlinear dynamic problem for a von Kármán shear indeformable symmetric cross-ply composite plate in a thermomechanical environment is presented, along with the ensuing reduction procedure ending up to a three-mode discretized model with unknown transverse displacement and membrane/bending temperatures. Systematic numerical analyses in the case of thermal dynamics passively entrained by the solely active mechanical excitations allow to unveil the main features of the nonlinear response, while highlighting fundamental aspects associated with the thermomechanical coupling. Local and global dynamics of a single-layer orthotropic plate are investigated under varying in-plane/transverse excitations or thermal property of the material. Comparison with the response provided by partially coupled models and the uncoupled mechanical oscillator enables to identify situations in which thermomechanical coupling affects the nonlinear response even in the solely passive thermal setting and to frame the relevant effects within known literature results.  相似文献   

11.
Bifurcations of thin circular elastic plates subjected to uniform normal pressure are explored by taking into account the flexural compliance of the edge restraint. This effect is accounted for by formally reinforcing the outer rim of the plate with a curved beam element, whose net effect is akin to a Hookean spring relating the inclination of the median surface of the plate (with respect to a horizontal plane) and the radial edge moment. The new added feature reflects the imperfect nature of the boundary restraints achieved under realistic physical conditions, and includes as particular cases the usual boundary conditions associated with flexurally simply-supported and clamped plates. It is shown here that in the limit of eigen-deformations with very short wavelengths in the azimuthal direction the two equations in the Föppl-von Kármán bifurcation system remain coupled. However, for edge restraints close to the former type the asymptotic limit of the bifurcation system is described by an Airy-like equation, whereas when the outer rim of the plate is flexurally clamped the Airy-like structure morphs into a standard equation for parabolic cylinder functions. Our singular perturbation arguments are complemented by direct numerical simulations that shed further light on the aforementioned results.  相似文献   

12.
均匀径向压力作用下深圆拱的平面内稳定性   总被引:1,自引:0,他引:1  
申波  马克俭 《力学与实践》2013,35(2):62-66,55
利用小变形理论及ANSYS 研究了均匀径向压力作用下深圆拱的平面内稳定性,算例分析表明,当深圆拱的圆心角较小时,圆拱受径向压力的稳定性高于受静水压力的稳定性,当深圆拱的圆心角较大时,圆拱受径向压力的稳定性低于受静水压力的稳定性.  相似文献   

13.
The present study proposes a nonclassical Kirchhoff plate model for the axisymmetrically nonlinear bending analysis of circular microplates under uniformly distributed transverse loads. The governing differential equations are derived from the principle of minimum total potential energy based on the modified couple stress theory and von Kármán geometrically nonlinear theory in terms of the deflection and radial membrane force, with only one material length scale parameter to capture the size-dependent behavior. The governing equations are firstly discretized to a set of nonlinear algebraic equations by the orthogonal collocation point method, and then solved numerically by the Newton–Raphson iteration method to obtain the size-dependent solutions for deflections and radial membrane forces. The influences of length scale parameter on the bending behaviors of microplates are discussed in detail for immovable clamped and simply supported edge conditions. The numerical results indicate that the microplates modeled by the modified couple stress theory causes more stiffness than modeled by the classical continuum plate theory, such that for plates with small thickness to material length scale ratio, the difference between the results of these two theories is significantly large, but it becomes decreasing or even diminishing with increasing thickness to length scale ratio.  相似文献   

14.
A semi-analytical approach to the elastic nonlinear stability analysis of rectangular plates is developed. Arbitrary boundary conditions and general out-of-plane and in-plane loads are considered. The geometrically nonlinear formulation for the elastic rectangular plate is derived using the thin plate theory with the nonlinear von Kármán strains and the variational multi-term extended Kantorovich method. Emphasis is placed on the effect of destabilizing loads and on the derivation of the solution methodologies required for tracking a highly nonlinear equilibrium path, namely: parameter continuation and arc-length continuation procedures. These procedures, which are commonly used for the solution of discretized structural systems governed by nonlinear algebraic equations, are augmented and generalized for the direct application to the PDE. The boundary value problem that results from the arc-length continuation scheme and consists of coupled differential, integral, and algebraic equations is re-formulated in a form that allows the use of standard numerical BVP solvers. The performance of the continuation procedures and the convergence of the multi-term extended Kantorovich method are examined through the solution of the two-dimensional Bratu–Gelfand benchmark problem. The applicability of the proposed approach to the tracking of the nonlinear equilibrium path in the post-buckling range is demonstrated through numerical examples of rectangular plates with various boundary conditions.  相似文献   

15.
In this paper, problems of buckling of an annular thin plate under the action of in-plane pressure and transverse load are studied by using the method of multiple scales. We obtain N-order uniformly valid asymptotic expansion of the solution. In the latter part of this paper we discuss a particular example, and calculate the critical value of in-plane pressure. We see that the asymptotic expansion obtained by the multiple scales is completely consistent with that of the exact solution.  相似文献   

16.
this paper presents a series solution to von Kármán nonlinear equations of a rectilinearly orthotropic rectangular plate under the combined action of lateral load and in-plane tension with the titled edge restraints. In the formulation the edge moments are replaced by an equivalent pressure near the edges. Using generalized double Fourier series for the deflection and stress function, governing equations are reduced to an infinite set of algebraic equations for coefficients in these series. Numerical results for deflections, bending moments and in-plane forces are graphically presented for various values of aspect ratio and material properties and for different edge conditions.  相似文献   

17.
Nonlinear dynamic responses of a laminated hybrid composite plate subjected to time-dependent pulses are investigated. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a clamped plate are assumed for the space domain. The single term approximation functions are selected by considering the nonlinear static deformation of plate obtained using the finite element method. The Galerkin Method is used to obtain the nonlinear differential equations in the time domain and a MATLAB software code is written to solve nonlinear coupled equations by using the Newmark Method. The results of approximate-numerical analysis are obtained and compared with the finite element results. Transient loading conditions considered include blast, sine, rectangular, and triangular pulses. A parametric study is conducted considering the effects of peak pressure, aspect ratio, fiber orientation and thicknesses.  相似文献   

18.
It has been known for some time that under certain circumstances the axisymmetric solution describing the deformation experienced by a stretched circular thin plate or membrane under sufficiently strong normal pressure does not represent an energy-minimum configuration. By using the method of adjacent equilibrium a set of coordinate-free bifurcation equations is derived here by adopting the Föppl–von Kármán plate theory. A particular class of asymmetric bifurcation solutions is then investigated by reduction to a system of ordinary differential equations with variable coefficients. The localised character of the eigenmodes is confirmed numerically and we also look briefly at the role played by the background tension on this phenomenon.  相似文献   

19.
20.
This study is conducted to investigate the Bingham—Papanastasiou fluid flow driven by a rotating infinite disk. The Bingham—Papanastasiou model is a modification of the Bingham plastic model, which is developed by introducing a continuation parameter to overcome its discontinuity. The von K´armán similarity solution is used to transform the flow equations from ordinary differential equations to a nonlinear system of partial differential equations, which is solved numerically. The effect of the Bingham flow parameters on the radial, tangential, and axial velocities, pressure, and radial and tangential skin friction coefficients is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号