首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the dynamical properties of finite N-unit FitzHugh-Nagumo (FN) ensembles subjected to additive and/or multiplicative noises, reformulating the augmented moment method (AMM) with the Fokker-Planck equation (FPE) method [H. Hasegawa, J. Phys. Soc. Japan 75 (2006) 033001]. In the AMM, original 2N-dimensional stochastic equations are transformed to eight-dimensional deterministic ones, and the dynamics is described in terms of averages and fluctuations of local and global variables. The stochastic bifurcation is discussed by a linear stability analysis of the deterministic AMM equations. The bifurcation transition diagram of multiplicative noise is rather different from that of additive noise: the former has the wider oscillating region than the latter. The synchronization in globally-coupled FN ensembles is also investigated. Results of the AMM are in good agreement with those of direct simulations (DSs).  相似文献   

2.
Stochastic resonance (SR) in an over-damped linear system subjected to an excitation of bias signal modulated noise with multiplicative and additive noises is investigated. We obtain the exact expressions of the first two moments and the signal-to-noise ratio (SNR) of the output by using linear-response theory. The SNR depends non-monotonically on the intensity and the correlation time of multiplicative noise, the correlation time of additive noise, the intensity of the cross noise between multiplicative and additive noise, as well as the external field frequency. The conventional SR, the SR in a broad sense and the bona fide SR are found in the system. The influences of the asymmetries of multiplicative and additive noise, the correlation rate of the cross noise, the intensity of additive noise, the amplitude of signal and the bias on the SNR are analyzed. Moreover, we pointed out that SR can be realized by tuning the system parameter with fixed noise, i.e., parameter-induced stochastic resonance (PSR) exists.  相似文献   

3.
Most real life systems have a random component: the multitude of endogenous and exogenous factors influencing them result in stochastic fluctuations of the parameters determining their dynamics. These empirical systems are in many cases subject to noise of multiplicative nature. The special properties of multiplicative noise as opposed to additive noise have been noticed for a long while. Even though apparently and formally the difference between free additive vs. multiplicative random walks consists in just a move from normal to log-normal distributions, in practice the implications are much more far reaching. While in an additive context the emergence and survival of cooperation requires special conditions (especially some level of reward, punishment, reciprocity), we find that in the multiplicative random context the emergence of cooperation is much more natural and effective. We study the various implications of this observation and its applications in various contexts.  相似文献   

4.
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probaibility distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes. stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion - controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and nonequilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + XA (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered.  相似文献   

5.
For a given master equation of a discontinuous irreversible Markov process, we present the derivation of stochastically equivalent Langevin equations in which the noise is either multiplicative white generalized Poisson noise or a spectrum of multiplicative white Poisson noise. In order to achieve this goal, we introduce two new stochastic integrals of the Ito type, which provide the corresponding interpretation of the Langevin equations. The relationship with other definitions for stochastic integrals is discussed. The results are elucidated by two examples of integro-master equations describing nonlinear relaxation.  相似文献   

6.
The purpose of this study is to develop a stochastic Newmark integration principle based on an implicit stochastic Taylor (Ito-Taylor or Stratonovich-Taylor) expansion of the vector field. As in the deterministic case, implicitness in stochastic Taylor expansions for the displacement and velocity vectors is achieved by introducing a couple of non-unique integration parameters, α and β. A rigorous error analysis is performed to put bounds on the local and global errors in computing displacements and velocities. The stochastic Newmark method is elegantly adaptable for obtaining strong sample-path solutions of linear and non-linear multi-degree-of freedom (m.d.o.f.) stochastic engineering systems with continuous and Lipschitz-bounded vector fields under (filtered) white-noise inputs. The method has presently been numerically illustrated, to a limited extent, for sample-path integration of a hardening Duffing oscillator under additive and multiplicative white-noise excitations. The results are indicative of consistency, convergence and stochastic numerical stability of the stochastic Newmark method (SNM).  相似文献   

7.
A bistable system with noise and time delay is investigated. Theoretical analysis and stochastic simulation show that: (i) In the ease of a system driven only by multiplicative Gaussian white noise, the mean first-passage time for a particle to reach the other stable state from one stable state exhibits a minimum with respect to delay time, i.e., a resonant-like activation (RA) phenomenon. (ii) In the action of additive and multiplicative noise, as the additive noise intensity increases, no matter whether a correlation between the two types of noise exists or not, the RA gradually disappears. (iii) The correlation strength between the two types of noise does not influence the existence of the RA.  相似文献   

8.
It is shown that the true cause of inverse-power distributions in the Ito equation is some kind of privilege which is hidden in the course of evolution of the system. Connections between Ito equations with additive noise or/and multiplicative noise with additive processes, multiplicative processes, multiplication of probabilities and return-to-the-origin problem are found. On the basis of two toy models, the appearance of particular functions for deterministic and stochastic forces in the Ito equation is explained. The paper stands as the next contribution confirming the hypothesis that the adequate privilege is the cause for the origin of inverse-power distributions in many phenomena.  相似文献   

9.
We study different nonlinear systems which possess noise-induced nonequlibrium transitions and shed light on the role of additive noise in these effects. We find that the influence of additive noise can be very nontrivial: it can induce first- and second-order phase transitions, can change properties of on-off intermittency, or stabilize oscillations. For the Swift-Hohenberg coupling, that is a paradigm in the study of pattern formation, we show that additive noise can cause the formation of ordered spatial patterns in distributed systems. We show also the effect of doubly stochastic resonance, which differs from stochastic resonance, because the influence of noise is twofold: multiplicative noise and coupling induce a bistability of a system, and additive noise changes a response of this noise-induced structure to the periodic driving. Despite the close similarity, we point out several important distinctions between conventional stochastic resonance and doubly stochastic resonance. Finally, we discuss open questions and possible experimental implementations. (c) 2001 American Institute of Physics.  相似文献   

10.
Langevin equations for closed systems with multiplicative fluctuations must also include appropriate dissipative terms that ensure eventual equilibration of the system. We consider an oscillator coupled to a heat bath and show that a particular nonlinear coupling to a harmonic heat bath leads to a fluctuating frequency and to nonlinear dissipative terms. We also analyze the effects of the multiplicative fluctuations and of the corresponding nonlinear dissipation on the temporal evolution of the average oscillator energy. We find that the rate of equilibration of this system can be significantly different from that of an oscillator with only additive fluctuations and linear dissipation.  相似文献   

11.
This review addresses a central question in the field of complex systems: given a fluctuating (in time or space), sequentially measured set of experimental data, how should one analyze the data, assess their underlying trends, and discover the characteristics of the fluctuations that generate the experimental traces? In recent years, significant progress has been made in addressing this question for a class of stochastic processes that can be modeled by Langevin equations, including additive as well as multiplicative fluctuations or noise. Important results have emerged from the analysis of temporal data for such diverse fields as neuroscience, cardiology, finance, economy, surface science, turbulence, seismic time series and epileptic brain dynamics, to name but a few. Furthermore, it has been recognized that a similar approach can be applied to the data that depend on a length scale, such as velocity increments in fully developed turbulent flow, or height increments that characterize rough surfaces. A basic ingredient of the approach to the analysis of fluctuating data is the presence of a Markovian property, which can be detected in real systems above a certain time or length scale. This scale is referred to as the Markov-Einstein (ME) scale, and has turned out to be a useful characteristic of complex systems. We provide a review of the operational methods that have been developed for analyzing stochastic data in time and scale. We address in detail the following issues: (i) reconstruction of stochastic evolution equations from data in terms of the Langevin equations or the corresponding Fokker-Planck equations and (ii) intermittency, cascades, and multiscale correlation functions.  相似文献   

12.
We study the effect of time delay in the FitzHugh-Nagumo neural model with correlations between multiplicative and additive noise terms. Based on the corresponding Fokker-Planck equation, the explicit expressions of the stationary probability distribution function (SPDF), the mean first passage time (MFPT) and the signal-to-noise ratio (SNR) are obtained, respectively. Research results show that: (i) the system undergoes a succession of two phase transitions (i.e., the reentrance phenomenon) as the noise correlation parameter is increased and a (single) phase transition as the time delay is increased. (ii) The MFPT as a function of the multiplicative noise intensity exhibits a maximum. This maximum for MFPT identifies the noise enhanced stability (NES) effect, the noise correlation parameter intensifies the NES effect while the time delay, and the additive noise intensity weakens it. (iii) The existence of a maximum in the SNR as a function of the multiplicative noise intensity is the identifying characteristic of the stochastic resonance (SR) phenomenon, the noise correlation parameter enhances the SR while the time delay, and the additive noise intensity weaken it.  相似文献   

13.
B. Roy Frieden 《Physica A》1992,180(3-4):359-385
Maxwell's equations of classical electrodynamics may be derived on the following statistical basis. Consider a gedanken experiment whereby the mean space-time coordinate for photons in an electromagnetic field is to be determined by observation of one photon's space-time coordinate. An efficient (i.e. optimum) estimate obeys a condition of minimum Fisher information, or minimum precision, according to the second law of thermodynamics. The Fisher information I is a simple functional of the probability law governing space-time coordinates of the “particles” of the field. This probability law is modeled as the source-free Poynting energy flow density, i.e., the ordinary local intensity in the optical sense, or, the square of the four-vector potential. When the Fisher information is extremized subject to an additive constraint term in the total interaction energy, Maxwell's equations result.  相似文献   

14.
A model obtained by a seven-mode truncation of the Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is studied. This model, extending a previously studied five-mode one, exhibits a very rich and varied phenomenology including some remarkable properties of hysteresis (i.e., coexistence of attractors). A stochastic behavior is found for high values of the Reynolds number, when no stable fixed points, closed orbits, or tori are present.  相似文献   

15.
Macroscopic systems (e.g., hydrodynamics, chemical reactions, electrical circuits, etc.) manifest intrinsic fluctuations of molecular and thermal origin. When the macroscopic dynamics is deterministically chaotic, the intrinsic fluctuations may become amplified by several orders of magnitude. Numerical studies of this phenomenon are presented in detail for the Lorenz model. Amplification to macroscopic scales is exhibited, and quantitative methods (binning and a difference-norm) are presented for measuring macroscopically subliminal amplification effects. In order to test the quality of the numerical results, noise induced chaos is studied around a deterministically nonchaotic state, where the scaling law relating the Lyapunov exponent to noise strength obtained for maps is confirmed for the Lorenz model, a system of ordinary differential equations.  相似文献   

16.
17.
We study analytically and numerically the noise-induced transition between an absorbing and an oscillatory state in a Duffing oscillator subject to multiplicative, Gaussian white noise. We show in a non-perturbative manner that a stochastic bifurcation occurs when the Lyapunov exponent of the linearised system becomes positive. We deduce from a simple formula for the Lyapunov exponent the phase diagram of the stochastic Duffing oscillator. The behaviour of physical observables, such as the oscillators mean energy, is studied both close to and far from the bifurcation.Received: 8 August 2003, Published online: 19 November 2003PACS: 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) - 05.45.-a Nonlinear dynamics and nonlinear dynamical systems  相似文献   

18.
Zheng-Lin Jia 《Physica A》2008,387(25):6247-6251
The effects of time delay on the transient properties of a time-delayed metastable system subjected to cross-correlated noises are studied by means of a stochastic simulation method. It is found that: (i) Both additive noise and multiplicative noise can produce the noise enhanced stability (NES) effect; (ii) The time delay induces critical behavior on the NES, i.e., there is a critical value of the delay time τc1≈2.2, above which the time delay increases the stability of the system enhanced by the additive noise, and below which the NES effect induced by the additive noise disappears; (iii) There exists another critical value of the delay time τc2≈3.0, above which the time delay increases the stability of the system enhanced by the multiplicative noise and below which the time delay decreases it.  相似文献   

19.
20.
In this paper, we study the phenomenon of stochastic resonance (SR) in a periodically driven bistable system with correlations between multiplicative and additive white noise terms when there are two different kinds of time delays existed in the deterministic and fluctuating forces, respectively. Using the small time delay approximation and the theory of signal-to-noise ratio (SNR) in the adiabatic limit, the expression of SNR is obtained. The effects ofthe delay time τ in the deterministic force, and the delay time θ in the fluctuating force on SNR are discussed. Based on the numerical computation, it is found that: (i) There appears a reentrant transition between one peak and two peaks and then to one peak again in the curve of SNR when the value of the time delay θ is increased. (ii) SR can be realized by tuning thetime delay τ or θ with fixed noise, i.e., delay-inducedstochastic resonance (DSR) exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号