首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we develop optimization, decomposition, and heuristic procedures to design a unidirectional loop flow pattern along with the pickup and delivery station locations for unit load automated material handling vehicles. The layout of the facility is fixed, the edges on the boundary of the manufacturing cells are candidates to form the unidirectional loop flow path, and a set of nodes located at an intermediate point on each edge are candidates for pickup and delivery stations of the cell formed by those edges. The objective is to minimize the total loaded and empty vehicle trip distances. The empty vehicle dispatching policy underlying the model is the shortest trip distance first. A binary integer programming model describes the problem of determining the flow path and locations of the pickup and delivery stations in which we then provide a decomposition procedure based on a loop enumeration strategy coupled with a streamlined integer linear programming model. It is shown that only a small proportion of all loops have to be enumerated to reach an optimum. Therefore a truncated version of this algorithm should yield a good heuristic. Finally we propose a neighbourhood search heuristic method and report on its performance.  相似文献   

2.
The vehicle routing problem with backhauls involves the delivery and pickup of goods at different customer locations. In many practical situations, however, the same customer may require both a delivery of goods from the distribution centre and a pickup of recycled items simultaneously. In this paper, an insertion-based procedure to generate good initial solutions and a heuristic based on the record-to-record travel, tabu lists, and route improvement procedures are proposed to resolve the vehicle routing problems with simultaneous deliveries and pickups. Computational characteristics of the insertion-based procedure and the hybrid heuristic are evaluated through computational experiments. Computational results show that the insertion-based procedure obtained better solutions than those found in the literature. Computational experiments also show that the proposed hybrid heuristic is able to reduce the gap between initial solutions and optimal solutions effectively and is capable of obtaining optimal solutions very efficiently for small-sized problems.  相似文献   

3.
We address a problem of vehicle routing that arises in picking up and delivering full container load from/to an intermodal terminal. The substantial cost and time savings are expected by efficient linkage between pickup and delivery tasks, if the time of tasks and the suitability of containers for cargo allow. As this problem is NP-hard, we develop a subgradient heuristic based on a Lagrangian relaxation which enables us to identify a near optimal solution. The heuristic consists of two sub-problems: the classical assignment problem and the generalized assignment problem. As generalized assignment problem is also NP-hard, we employ an efficient solution procedure for a bin packing based problem, which replaces the generalized assignment problem. The heuristic procedure is tested on a wide variety of problem examples. The test results demonstrate that the procedure developed here can efficiently solve large instances of the problem.  相似文献   

4.
The problem considered is the full-load pickup and delivery problem with time windows (PDPTW), and heterogeneous products and vehicles, where the assignment of pickup points to requests is not predetermined. Elements associated with tabu search, such as diversification by reversion to junctions and the use of soft aspiration criteria, are embedded into our tabu search implementation. This metaheuristic is evaluated using random instances and selected data from a construction company in the U.K. The obtained results are compared against lower bounds from LP relaxation and also solutions from an existing multi-level heuristic.  相似文献   

5.
The vehicle routing problem (VRP) with simultaneous pickup and delivery (VRPSPD) is an extension of the classical capacitated VRP (CVRP). In this paper, we present the saving heuristic and the parallel saving heuristic for VRPSPD. Checking the feasibility of a route in VRPSPD is difficult because of the fluctuating load on the route. In the saving heuristic, a new route is created by merging the two existing routes. We use a cumulative net-pickup approach for checking the feasibility when two existing routes are merged. The numerical results show that the performance of the proposed heuristics is qualitatively better than the existing insertion-based heuristics.  相似文献   

6.
The feasible solutions of the traveling salesman problem with pickup and delivery (TSPPD) are commonly represented by vertex lists. However, when the TSPPD is required to follow a policy that loading and unloading operations must be performed in a last-in-first-out (LIFO) manner, we show that its feasible solutions can be represented by trees. Consequently, we develop a novel variable neighborhood search (VNS) heuristic for the TSPPD with last-in-first-out loading (TSPPDL) involving several search operators based on the tree data structure. Extensive experiments suggest that our VNS heuristic is superior to the current best heuristics for the TSPPDL in terms of solution quality, while requiring no more computing time as the size of the problem increases.  相似文献   

7.
The single loop material flow system design is a combinatorial optimization problem, arising in material handling system design, which amounts to designing an unidirectional loop flow pattern as well as to locate pickup and delivery stations. The objective is to minimize the time required to carry out all material flow movements between cells. In this paper, we develop valid inequalities for a previously proposed formulation. The valid inequalities are then embedded into a branch-and-cut framework which is shown to solve much larger instances to optimality than those reported in the literature. A tailored tabu search heuristic is also illustrated and computationally assessed.  相似文献   

8.
一类新的车辆路径问题及其两阶段算法   总被引:2,自引:0,他引:2  
本文结合汽车零部件第三方物流业的实际背景,提出了一类新的车辆路径问题,它是一种带时间窗约束的分车运输同时收发车辆路径问题(简称SVRPSPDTW).接着给出了问题的模型,并提出求解问题的启发式算法:两阶段算法. 最后在改进的Solomn的算例的基础上,进行了数值试验.  相似文献   

9.
A vehicle routing problem is stochastic when the demands at individual delivery (pickup) locations behave as random variables, and the routes must be defined before the values of these random variables become known. This paper presents several formulations and heuristic algorithms for solving this complex problem.  相似文献   

10.
The single vehicle routing problem with pickups and deliveries (SVRPPD) is defined on a graph in which pickup and delivery demands are associated with the customer vertices. The problem consists of designing a least cost route for a vehicle of capacity Q. Each customer is allowed to be visited once for a combined pickup and delivery, or twice if these two operations are performed separately. This article proposes a mixed integer linear programming model for the SVRPPD. It introduces the concept of general solution which encompasses known solution shapes such as Hamiltonian, double-path and lasso. Classical construction and improvement heuristics, as well as a tabu search heuristic, are developed and tested over several instances. Computational results show that the best solutions generated by the heuristics are frequently non-Hamiltonian and may contain up to two customers visited twice.  相似文献   

11.
本文结合汽车零部件第三方物流的实际背景,提出了带时间窗的可分车运输同时收发车辆路径问题(简称SVRPSPDTW),并给出了问题的数学模型,同时提出两个求解该问题的启发式算法,最后进行了数值试验.由于没有可以利用的算例,本文在Solomn测试基准库的基础上构建了针对新问题的算例.计算结果表明,所有算例计算时间均不超过1秒,且算法1无论是从车辆的使用数还是从车辆行驶的路径总长度上都明显优于算法2,从而说明算法1是寻找SVRPSPDTW问题初始可行解的较为有效的算法.  相似文献   

12.
In shipping services, the goal is to propose cyclical routes which ensure transport of required goods among the main centers of the regions. It is classified as a pickup and delivery problem with split demand and reloading. The objective is to minimize total shipping costs, or the total length of all cyclical routes. The optimum solution gives a number of vehicles going on arcs of the communication network and the amount of goods being transported on the arcs. Consequently, cyclical routes and depots are proposed for all vehicles. First, the multi-graph, in which each directed arc corresponds to exactly one vehicle, is generated. The multi-graph satisfies the condition that the number of arcs entering each node equals the number of arcs exiting the node. The heuristic method of loading goods onto a vehicle in the pickup node and to transport it to the delivery node without reloading onto another vehicle is proposed. The method is verified in the case study carried out on the DHL company.  相似文献   

13.
The joint optimization of routing and loading operations is crucial to fully optimize the overall planning process in logistics, and as a result routing problems with side constraints are becoming more and more important during the last years. This paper approaches the design of optimal routes for pickup and delivery operations considering in addition some capacity and loading constraints on the vehicles to be used. It is focused on exploiting new ideas to deal with real life situations in which the customers are not uniformly distributed on the pickup or delivery regions of the problem. An adapted and effective heuristic based on a Variable Neighborhood Search framework using improved neighborhood structures is proposed and discussed. The algorithm is applied to several new sets of instances with special structures to better represent real life situations, providing computational results to evaluate its performance.  相似文献   

14.
We introduce the time-dependent capacitated profitable tour problem with time windows and precedence constraints. This problem concerns determining a tour and its departure time at the depot that maximizes the collected profit minus the total travel cost (measured by total travel time). To deal with road congestion, travel times are considered to be time-dependent. We develop a tailored labeling algorithm to find the optimal tour. Furthermore, we introduce dominance criteria to discard unpromising labels. Our computational results demonstrate that the algorithm is capable of solving instances with up to 150 locations (75 pickup and delivery requests) to optimality. Additionally, we present a restricted dynamic programing heuristic to improve the computation time. This heuristic does not guarantee optimality, but is able to find the optimal solution for 32 instances out of the 34 instances.  相似文献   

15.
Just-in-time (JIT) trucking service, i.e., arriving at customers within specified time windows, has become the norm for freight carriers in all stages of supply chains. In this paper, a JIT pickup/delivery problem is formulated as a stochastic dynamic traveling salesman problem with time windows (SDTSPTW). At a customer location, the vehicle either picks up goods for or delivers goods from the depot, but does not provide moving service to transfer goods from one location to another. Such routing problems are NP-hard in deterministic settings, and in our context, complicated further by the stochastic, dynamic nature of the problem. This paper develops an efficient heuristic for the SDTSPTW with hard time windows. The heuristic is shown to be useful both in controlled numerical experiments and in applying to a real-life trucking problem.  相似文献   

16.
The Vehicle Routing Problem with Backhauls is a generalization of the ordinary capacitated vehicle routing problem where goods are delivered from the depot to the linehaul customers, and additional goods are brought back to the depot from the backhaul customers. Numerous ways of modeling the backhaul constraints have been proposed in the literature, each imposing different restrictions on the handling of backhaul customers. A survey of these models is presented, and a unified model is developed that is capable of handling most variants of the problem from the literature. The unified model can be seen as a Rich Pickup and Delivery Problem with Time Windows, which can be solved through an improved version of the large neighborhood search heuristic proposed by Ropke and Pisinger [An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows, Technical Report, DIKU, University of Copenhagen, 2004]. The results obtained in this way are comparable to or improve on similar results found by state of the art heuristics for the various variants of the problem. The heuristic has been tested on 338 problems from the literature and it has improved the best known solution for 227 of these. An additional benefit of the unified modeling and solution method is that it allows the dispatcher to mix various variants of the Vehicle Routing Problem with Backhauls for the individual customers or vehicles.  相似文献   

17.
This paper addresses a practical problem encountered in the oil industry, related to the supplying of general cargo to offshore rigs and production units. For a given route assigned to a supply vessel we seek to determine the optimal two-dimensional positioning of deck cargoes such that the overall profit is maximized, while ensuring that several safety and operational constraints are respected. In terms of mathematical modelling, the resulting problem can be seen as a rich variation of the two-dimensional knapsack problem, since some cargoes may wait for a later trip. Furthermore, given that the trip may serve many offshore units and that a substantial number of items must also return from these units, the problem becomes even more complex and can be viewed as a pickup and delivery allocation problem. We propose a probabilistic constructive procedure combined with a local search heuristic to solve this problem. We also report the results of computational experiments with randomly generated instances. These results evidence that our proposed heuristic can effectively help ship planners when dealing with such large-scale allocation problems, with many operational constraints.  相似文献   

18.
In this paper, a parallel clustering technique and route construction heuristic have been developed for the vehicle routing problem (VRP) with split deliveries and pickups. An MILP formulation for determining the exact solution to the problem has also been included. It has been shown through extensive experimentation that the algorithm proposed in this paper statistically produces better results than the only heuristic existing for this class of problems in literature. We also form a basis of comparison between this class of problems and the VRP with simultaneous deliveries and pickups. We note that while heuristics for simultaneous deliveries and pickups cannot be applied in situations where customers' delivery or pickup demands exceed the vehicle capacity, heuristics allowing split deliveries and pickups can, in fact, be applied in every situation, even producing superior results under the combined objective of minimization of the fixed charge and mileage associated with vehicle routes. A guideline as to which heuristic could be used under what parametric conditions and objective functions, has also been provided.  相似文献   

19.
In the Dial-a-Ride problem (DARP), customers request transportation from an operator. A request consists of a specified pickup location and destination location along with a desired departure or arrival time and capacity demand. The aim of DARP is to minimize transportation cost while satisfying customer service level constraints (Quality of Service). In this paper, we present a genetic algorithm (GA) for solving the DARP. The algorithm is based on the classical cluster-first, route-second approach, where it alternates between assigning customers to vehicles using a GA and solving independent routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets. The new solution method has achieved solutions comparable with the current state-of-the-art methods.  相似文献   

20.
Dial-a-Ride is an emerging transport system, in which a fleet of vehicles, without fixed routes and schedules, carries people from the desired pickup point to the desired delivery point, during a pre-specified time interval. It can be modeled as an -hard routing and scheduling problem, with a suitable mixed integer programming formulation. Exact approaches to this problem are too limited to tackle real-life instances (hundred of trips), therefore heuristics are needed. The heuristic method proposed in this paper builds an auxiliary graph and then solves an assignment problem on this graph. The auxiliary graph is obtained by replacing pairs of nodes with a single one and associating an ad hoc cost function to the new set of arcs. Two different simple methods are employed to transform the infeasible solution given by the assignment problem into a feasible one. The proposed algorithms have been tested on instances created using the Milan network and shown to be fast and effective.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号