首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathematical Programming models for multi-period network design problems, which arise in cellular telecommunication systems are presented. The underlying network topologies range from a simple star to complex multi-layer Steiner-like networks. Linear programming, Lagrangian relaxation, and branch-and-cut heuristics are proposed and a polynomial-bounded heuristic based on an interior point linear programming implementation is described. Extensive computational results are presented on a number of randomly generated problem sets and the performance of the heuristic(s) are compared with an optimal branch-and-bound algorithm.  相似文献   

2.
A two-stage facility location problem on a tree-like network is considered under the restriction that the transportation costs for a unit of production from one node to another is equal to the sum of the edges in the path connecting these nodes. Some exact algorithm with time complexity O(nm 3) is suggested for this problem, where n is the number of the production demand points and, m is an upper bound on the number of possible facility location sites of each stage.  相似文献   

3.
In this paper we consider the problem of designing a container liner shipping feeder network. The designer has to choose which port to serve during many rotations that start and end at a central hub. Many operational characteristics are considered, such as variable leg-by-leg speeds and cargo transit times. Realistic instances are generated from the LinerLib benchmark suite. The problem is solved with a branch-and-price algorithm, which can solve most instances to optimality within one hour. The results also provide insights on the cost structure and desirable features of optimal routes. These insights were obtained by means of an analysis where scenarios are generated varying internal and external conditions, such as fuel costs and port demands.  相似文献   

4.
This paper develops a multi-objective Mixed Integer Programming model for a closed-loop network design problem. In addition to the overall costs, the model optimizes overall carbon emissions and the responsiveness of the network. An improved genetic algorithm based on the framework of NSGA II is developed to solve the problem and obtain Pareto-optimal solutions. An example with 95 cities in China is presented to illustrate the approach. Through randomly generated examples with different sizes; the computational performance of the proposed algorithm is also compared with former genetic algorithms in the literature employing the weight-sum technique as a fitness evaluation strategy. Computational results indicate that the proposed algorithm can obtain superior Pareto-optimal solutions.  相似文献   

5.
The Hierarchical Network Design Problem consists of locating a minimum cost bi-level network on a graph. The higher level sub-network is a path visiting two or more nodes. The lower level sub-network is a forest connecting the remaining nodes to the path. We optimally solve the problem using an ad hoc branch and cut procedure. Relaxed versions of a base model are solved using an optimization package and, if binary variables have fractional values or if some of the relaxed constraints are violated in the solution, cutting planes are added. Once no more cuts can be added, branch and bound is used. The method for finding valid cutting planes is presented. Finally, we use different available test instances to compare the procedure with the best known published optimal procedure, with good results. In none of the instances we needed to apply branch and bound, but only the cutting planes.  相似文献   

6.
We consider an optimization problem that integrates network design and broadcast domination decisions. Given an undirected graph, a feasible broadcast domination is a set of nonnegative integer powers f i assigned to each node i, such that for any node j in the graph, there exists some node k having a positive f k -value whose shortest distance to node j is no more than f k . The cost of a broadcast domination solution is the sum of all node power values. The network design problem constructs edges that decrease the minimum broadcast domination cost on the graph. The overall problem we consider minimizes the sum of edge construction costs and broadcast domination costs. We show that this problem is NP-hard in the strong sense, even on unweighted graphs. We then propose a decomposition strategy, which iteratively adds valid inequalities based on optimal broadcast domination solutions corresponding to the first-stage network design solutions. We demonstrate that our decomposition approach is computationally far superior to the solution of a single large-scale mixed-integer programming formulation.  相似文献   

7.
In this paper we consider the problem of constructing a network over which a number of commodities are to be transported. Fixed costs are associated to the construction of network arcs and variable costs are associated to routing of commodities. In addition, one capacity constraint is related to each arc. The problem is to determine a network design that minimizes the total cost; i.e., it balances the construction and operating costs. A dual ascent procedure for finding improved lower bounds and near-optimal solutions for the fixed-charge capacitated network design problem is proposed. The method is shown to generate tighter lower bounds than the linear programming relaxation of the problem.  相似文献   

8.
Transportation discrete network design problem (DNDP) is about how to modify an existing network of roads and highways in order to improve its total system travel time, and the candidate road building or expansion plan can only be added as a whole. DNDP can be formulated into a bi-level problem with binary variables. An active set algorithm has been proposed to solve the bi-level discrete network design problem, while it made an assumption that the capacity increase and construction cost of each road are based on the number of lanes. This paper considers a more general case when the capacity increase and construction cost are specified for each candidate plan. This paper also uses numerical methods instead of solvers to solve each step, so it provides a more direct understanding and control of the algorithm and running procedure. By analyzing the differences and getting corresponding solving methods, a modified active set algorithm is proposed in the paper. In the implementation of the algorithm and the validation, we use binary numeral system and ternary numeral system to avoid too many layers of loop and save storage space. Numerical experiments show the correctness and efficiency of the proposed modified active set algorithm.  相似文献   

9.
This paper presents a new combinatorial optimization problem that can be used to model the deployment of broadband telecommunications systems in which optical fiber cables are installed between a central office and a number of end-customers. In this capacitated network design problem the installation of optical fiber cables with sufficient capacity is required to carry the traffic from the central office to the end-customers at minimum cost. In the situation motivating this research the network does not necessarily need to connect all customers (or at least not with the best available technology). Instead, some nodes are potential customers. The aim is to select the customers to be connected to the central server and to choose the cable capacities to establish these connections. The telecom company takes the strategic decision of fixing a percentage of customers that should be served, and aims for minimizing the total cost of the network providing this minimum service. For that reason the underlying problem is called the Prize-Collecting Local Access Network Design problem (PC-LAN).  相似文献   

10.
In this paper, we study the application of a meta-heuristic to a two-machine flowshop scheduling problem. The meta-heuristic uses a branch-and-bound procedure to generate some information, which in turn is used to guide a genetic algorithm's search for optimal and near-optimal solutions. The criteria considered are makespan and average job flowtime. The problem has applications in flowshop environments where management is interested in reducing turn-around and job idle times simultaneously. We develop the combined branch-and-bound and genetic algorithm based procedure and two modified versions of it. Their performance is compared with that of three algorithms: pure branch-and-bound, pure genetic algorithm, and a heuristic. The results indicate that the combined approach and its modified versions are better than either of the pure strategies as well as the heuristic algorithm.  相似文献   

11.
The airline industry is under intense competition to simultaneously increase efficiency and satisfaction for passengers and profitability and internal system benefit for itself. The boarding process is one way to achieve these objectives as it tends itself to adaptive changes. In order to increase the flying time of a plane, commercial airlines try to minimize the boarding time, which is one of the most lengthy parts of a plane’s turn time. To reduce boarding time, it is thus necessary to minimize the number of interferences between passengers by controlling the order in which they get onto the plane through a boarding policy. Here, we determine the passenger boarding problem and examine the different kinds of passenger boarding strategies and boarding interferences in a single aisle aircraft. We offer a new integer linear programming approach to reduce the passenger boarding time. A genetic algorithm is used to solve this problem. Numerical results show effectiveness of the proposed algorithm.  相似文献   

12.
13.
This paper presents an alternative approach using genetic algorithm to a new variant of the unbalanced assignment problem that dealing with an additional constraint on the maximum number of jobs that can be assigned to some agent(s). In this approach, genetic algorithm is also improved by introducing newly proposed initialization, crossover and mutation in such a way that the developed algorithm is capable to assign optimally all the jobs to agents. Computational results with comparative performance of the algorithm are reported for four test problems.  相似文献   

14.
We study approximation algorithms for generalized network design where the cost of an edge depends on the identities of the demands using it (as a monotone subadditive function). Our main result is that even a very special case of this problem cannot be approximated to within a factor 2log1−ε|D| if D is the set of demands.  相似文献   

15.
This paper formulates the continuous network design problem as a mathematical program with complementarity constraints (MPCC), with the upper level a nonlinear programming problem and the lower level a nonlinear complementarity problem. Unlike in most previous studies, the proposed framework is more general, in which both symmetric and asymmetric user equilibria can be captured. By applying the complementarity slackness condition of the lower-level problem, the original bilevel formulation can be converted into a single-level and smooth nonlinear programming problem. In order to solve the problem, a relaxation scheme is applied by progressively restricting the complementarity condition, which has been proven to be a rigorous approach under certain conditions. The model and solution algorithm are tested for well-known network design problems and promising results are shown.  相似文献   

16.
In today's highly competitive telecommunication market, customers expect and demand reliable and high-quality service. In order to please customers, new telecommunication systems and networks which support a wide range of voice, data and video services are being designed with extremely high reliability/availability requirements, but usually without much consideration of cost. These super-reliable systems are generally very complex and therefore extremely expensive to develop, build, and operate. Increased costs are going to be reflected in the price of the services the system is offering, and the reliability benefits may be overshadowed by the fact that the procurement and operations of the system may be too costly; customers will be drawn to competitors with less expensive network solutions and more affordable services. This paper discusses alternative approaches to the system design from the point of view of future costs. We will illustrate that the system can be improved not only by increasing reliability of subsystems, but also by effectively utilizing system operations support. The operations support alternatives may be less expensive than reliability improvements and, in addition, may provide many strategic marketing advantages. In the telecommunication industry, a high-quality service requirement usually translates into a high-quality network. Network support is defined, and customers' expectations are discussed. In an example, based on the concept of distributed switching systems, we show how the selection of the maintenance/repair operation policy may influence the cost of the system operations and reduce the hardware costs involved.  相似文献   

17.
This work presents a biased random-key genetic algorithm (BRKGA) to solve the electric distribution network reconfiguration problem (DNR). The DNR is one of the most studied combinatorial optimization problems in power system analysis. Given a set of switches of an electric network that can be opened or closed, the objective is to select the best configuration of the switches to optimize a given network objective while at the same time satisfying a set of operational constraints. The good performance of BRKGAs on many combinatorial optimization problems and the fact that it has never been applied to solve DNR problems are the main motivation for this research. A BRKGA is a variant of random-key genetic algorithms, where one of the parents used for mating is biased to be of higher fitness than the other parent. Solutions are encoded by using random keys, which are represented as vectors of real numbers in the interval (0,1), thus enabling an indirect search of the solution inside a proprietary search space. The genetic operators do not need to be modified to generate only feasible solutions, which is an exclusive task of the decoder of the problem. Tests were performed on standard distribution systems used in DNR studies found in the technical literature and the performance and robustness of the BRKGA were compared with other GA implementations.  相似文献   

18.
The survivable network design problem (SNDP) is to construct a minimum-cost subgraph satisfying certain given edge-connectivity requirements. The first polynomial-time approximation algorithm was given by Williamson et al. (Combinatorica 15 (1995) 435–454). This paper gives an improved version that is more efficient. Consider a graph ofn vertices and connectivity requirements that are at mostk. Both algorithms find a solution that is within a factor 2k – 1 of optimal fork 2 and a factor 2 of optimal fork = 1. Our algorithm improves the time from O(k 3n4) to O ). Our algorithm shares features with those of Williamson et al. (Combinatorica 15 (1995) 435–454) but also differs from it at a high level, necessitating a different analysis of correctness and accuracy; our analysis is based on a combinatorial characterization of the redundant edges. Several other ideas are introduced to gain efficiency. These include a generalization of Padberg and Rao's characterization of minimum odd cuts, use of a representation of all minimum (s, t) cuts in a network, and a new priority queue system. The latter also improves the efficiency of the approximation algorithm of Goemans and Williamson (SIAM Journal on Computing 24 (1995) 296–317) for constrained forest problems such as minimum-weight matching, generalized Steiner trees and others. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.A preliminary version of this paper has appeared in the Proceedings of the Third Mathematical Programming Society Conference on Integer Programming and Combinatorial Optimization, 1993, pp. 57–74.Research supported in part by NSF Grant No. CCR-9215199 and AT & T Bell Laboratories.Research supported in part by Air Force contracts AFOSR-89-0271 and F49620-92-J-0125 and DARPA contracts N00014-89-J-1988 and N00014-92-1799.This research was performed while the author was a graduate student at MIT. Research supported by an NSF Graduate Fellowship, Air Force contract F49620-92-J-0125, DARPA contracts N00014-89-J-1988 and N00014-92-J-1799, and AT & T Bell Laboratories.  相似文献   

19.
We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.  相似文献   

20.
In this paper we deal with the product line design problem employing the seller's marginal return criterion. Because this problem is NP-Hard, many researchers proposed heuristic methods. We present a genetic algorithm (GA) based heuristic for solving the above problem. In the implementation, the GA is initialized in two different ways. In the first way, the GA is initialized with a random population. We call this algorithm GA1. In the second way, the solution of the beam search (BS) method is included in the first population of the GA. We call this algorithm GA2. We compare GA1, a recently developed BS method and GA2 on randomly generated problems. GA1 seems to be substantially better than the BS method in terms of CPU time. Also, the solutions found by GA1 are substantially better than those found by the BS method in comparable times. In many cases, GA2 improves the solution found by the BS method. Consequently, it is a good second step of the BS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号