首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study the differentiability of solutions of the second-order semilinear abstract retarded functional differential equation with unbounded delay, specially when the underlying space is reflexive or at least has the Radon–Nikodym property. We apply our results to characterize the infinitesimal generators of several strongly continuous semigroups of linear operators that arise in the theory of linear abstract retarded functional differential equations with unbounded delay on a phase space defined axiomatically.  相似文献   

2.
The purpose of this paper is to establish local theory for retarded functional differential equations with infinite delay, Some new conditions are proposed, and new results are obtained which is more general than the previous one. Our phase space is pseudo-metric space. We do not need x+ to be continuous in t on phase space. Our theorems are especially effective for Volterra integro-differential equations  相似文献   

3.
Existence and uniqueness theorems are proved for a general class of stochastic linear abstract evolution equations, with a general type of stochastic forcing term. The abstract evolution equation is modeled using an evolution operator (or 2-parameter semigroup) approach and this includes linear partial differential equations and linear differential delay equations. The stochastic forcing term is modeled by defining an Itô stochastic integral with respect to a Hilbert space-valued orthogonal increments process, which can be used to model both Gaussian and non-Gaussian white noise processes. The theory is illustrated by examples of stochastic partial differential equations and delay equations, which arise in filtering problems for distributed and delay systems.  相似文献   

4.
A solution of a linear delay differential equation can have an infinite number of isolated zeros on a finite interval. As is well known, for ordinary differential equations this is impossible.  相似文献   

5.
There exist a well-developed stability theory for neutral differential equations of the first order and only a few results on functional differential equations of the second order. One of the aims of this paper is to fill this gap. Explicit tests for stability of linear neutral delay differential equations of the second order are obtained.  相似文献   

6.
Fuhrmann’s state-space construction (in its generalized form) is used to obtain a general theory of first order representations of Fliess models defined over an arbitrary noetherian commutative ring. The case of arbitrary linear delay differential equations is involved.  相似文献   

7.
We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.  相似文献   

8.
In this paper we study a kind of second-order impulsive stochastic differential equations with state-dependent delay in a real separable Hilbert space. Some sufficient conditions for the approximate controllability of this system are formulated and proved under the assumption that the corresponding deterministic linear system is approximately controllable. The results concerning the existence and approximate controllability of mild solutions have been addressed by using strongly continuous cosine families of operators and the contraction mapping principle. At last, an example is given to illustrate the theory.  相似文献   

9.

In this paper we study numerical approximation of linear neutral differential equations on infinite interval using equations with piecewise constant arguments. As an application of our approximation results, we obtain stability theorems for some classes of linear delay and neutral difference equations.  相似文献   

10.
Peter Benner  Jens Saak 《PAMM》2010,10(1):591-592
The linear quadratic regulator problem (LQR) for parabolic partial differential equations (PDEs) has been understood to be an infinite-dimensional Hilbert space equivalent of the finite-dimensional LQR problem known from mathematical systems theory. The matrix equations from the finite-dimensional case become operator equations in the infinite-dimensional Hilbert space setting. A rigorous convergence theory for the approximation of the infinite-dimensional problem by Galerkin schemes in the space variable has been developed over the past decades. Numerical methods based on this approximation have been proven capable of solving the case of linear parabolic PDEs. Embedding these solvers in a model predictive control (MPC) scheme, also nonlinear systems can be handled. Convergence rates for the approximation in the linear case are well understood in terms of the PDE's solution trajectories, as well as the solution operators of the underlying matrix/operator equations. However, in practice engineers are often interested in suboptimality results in terms of the optimal cost, i.e., evaluation of the quadratic cost functional. In this contribution, we are closing this gap in the theory. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
时间延迟扩散-波动分数阶微分方程有限差分方法   总被引:1,自引:0,他引:1  
本文提出求解时间延迟扩散-波动分数阶微分方程有限差分方法,方程中对时间的一阶导函数用α阶(0 < α < 1) Caputo分数阶导数代替.文章中利用Lubich线性多步法对分数阶微分进行差分离散,且文章利用分段区间证明该方法是稳定的,且利用数值实验加以验证.  相似文献   

12.
Stability criteria for stochastic differential delay equations (SDDEs) have been studied intensively for the past few decades. However, most of these criteria can only be applied to delay equations where their coefficients are either linear or nonlinear but bounded by linear functions. Recently, the stability of highly nonlinear hybrid stochastic differential equations with a single delay is investigated in [Fei, Hu, Mao and Shen, Automatica, 2017], whose work, in this paper, is extended to highly nonlinear hybrid stochastic differential equations with variable multiple delays. In other words, this paper establishes the stability criteria of highly nonlinear hybrid variable multiple-delay stochastic differential equations. We also discuss an example to illustrate our results.  相似文献   

13.
Under consideration is the first order linear inhomogeneous differential equation in an abstract Banach space with a degenerate operator at the derivative, a relatively p-radial operator at the unknown function, and a continuous delay operator. We obtain conditions of unique solvability of the Cauchy problem and the Showalter problem by means of degenerate semigroup theory methods. These general results are applied to the initial boundary value problems for systems of integrodifferential equations of the type of phase field equations.  相似文献   

14.
A new method is presented for factorization of bivariate polynomials over any field of characteristic zero or of relatively large characteristic. It is based on a simple partial differential equation that gives a system of linear equations. As in Berlekamp's and Niederreiter's algorithms for factoring univariate polynomials, the dimension of the solution space of the linear system is equal to the number of absolutely irreducible factors of the polynomial to be factored, and any basis for the solution space gives a complete factorization by computing gcd's and by factoring univariate polynomials over the ground field. The new method finds absolute and rational factorizations simultaneously and is easy to implement for finite fields, local fields, number fields, and the complex number field. The theory of the new method allows an effective Hilbert irreducibility theorem, thus an efficient reduction of polynomials from multivariate to bivariate.

  相似文献   


15.
In this paper, we study a class of fractional-order cellular neural network containing delay. We prove the existence and uniqueness of the equilibrium solution followed by boundedness. Based on the theory of fractional calculus, we approximate the solution of the corresponding neural network model over the interval \([0,\infty )\) using discretization method with piecewise constant arguments and variation of constants formula for fractional differential equations. Furthermore, we conclude that the solution of the fractional-delayed system can be approximated for large t by the solution of the equation with piecewise constant arguments, if the corresponding linear system is exponentially stable. At the end, we give two numerical examples to validate our theoretical findings.  相似文献   

16.
On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces and obtain the natural non-linear partial differential equations describing them. We obtain a characterization of space-like surfaces, whose curvatures satisfy a linear relation, by means of their natural partial differential equations. We obtain the ten natural PDE’s describing all linear fractional space-like Weingarten surfaces.  相似文献   

17.
In this paper, we consider the non-autonomous semilinear impulsive differential equations with state-dependent delay. The approximate controllability results of the first-order systems are obtained in a separable reflexive Banach space, which has a uniformly convex dual. In order to establish sufficient conditions of the approximate controllability of such a system, we have used the theory of linear evolution systems, properties of the resolvent operator and Schauder’s fixed point theorem. Finally, we provide two concrete examples to validate our results.  相似文献   

18.
By taking as a “prototype problem” a one-delay linear autonomous system of delay differential equations we present the problem of computing the characteristic roots of a retarded functional differential equation as an eigenvalue problem for a derivative operator with non-local boundary conditions given by the particular system considered. This theory can be enlarged to more general classes of functional equations such as neutral delay equations, age-structured population models and mixed-type functional differential equations.It is thus relevant to have a numerical technique to approximate the eigenvalues of derivative operators under non-local boundary conditions. In this paper we propose to discretize such operators by pseudospectral techniques and turn the original eigenvalue problem into a matrix eigenvalue problem. This approach is shown to be particularly efficient due to the well-known “spectral accuracy” convergence of pseudospectral methods. Numerical examples are given.  相似文献   

19.
The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations (NSDDEs) with Markovian switching (MS) without the linear growth condition. We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition. We also study its strong convergence rates at time $T$ and over a finite interval $[0, T]$. Some numerical examples are given to illustrate the theoretical results.  相似文献   

20.
证明了线性脉冲中立型时滞微分方程解的振动性等价于一类非脉冲中立型时滞微分方程解的振动性,应用这一结果建立了此类线性脉冲中立型微分方程解的振动性的显示判据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号