首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray reflectivities and grazing incidence X-ray diffractions of behenic acid (BA) monolayers compressed to the collapse region reveal that the resulting structures are reproducible and exhibit a high degree of order. The structures of the collapsed monolayers depend on the subphase solution. On pure water, the collapsed monolayer forms a stable crystalline trilayer structure. For monolayers spread on Ca2+ solutions, we find that an inverted bilayer structure is formed; that is, stretched BA-Ca-BA (calcium dibehenate, with calcium ions bridging the polar headgroups) forms a monolayer with the hydrophobic tails in contact with the water surface.  相似文献   

2.
Mixed monolayers of stearic acid (SA) and octadecylamine (ODA) at the air/water interface were investigated in this article. The miscibility of the two compounds was evaluated by the measurement of surface pressure-area per molecule (pi-A) isothems and the direct observation of Brewster angle microscopy (BAM) on the water surface. The two compounds were spread individually on the subphase (method 1) or premixed first in the spreading solvent and then cospread (method 2). The effect of spreading method on the miscibility of the two compounds was also studied. The results show that the mixed monolayers prepared by method 1 cannot get a well-mixed state. The isotherms of mixed monolayers preserve both characteristics of SA and ODA and exhibit two collapse points. The calculated excess surface area is very small. Besides, distinguished domains corresponding to those of pure SA and ODA can be inspected from the BAM images. Such results indicate that SA and ODA cannot get a well-mixed phase via 2-dimensional mixing. On the contrary, in the mixed monolayer prepared by cospreading, the two compounds exhibit high miscibility. In the pi-A isotherms, the individual characteristics of SA and ODA disappear. The calculated excess area exhibits a highly positive deviation which indicates the existence of special interaction between the two compounds. The low compressibility of isotherm implies the highly rigid characteristic of the mixed monolayer. which was also sustained by the striplike collapse morphology observed from the BAM. The rigid characteristic of SA/ODA mixed monolayer was attributed to the formation of "catanionic surfactant" by electrostatic adsorption of headgroups of SA and ODA or to the formation of salt by acid-base reaction.  相似文献   

3.
 Spread monolayers of two new skin permeation enhancers, MacroDerm A and MacroDerm L were investigated at the water/air interface as a function of temperature and of subphase composition. Both components did not seem to be markedly affected by changes in ionic strength and by the presence of metal ions in the subphase. The two-dimensional binary system MacroDerm A –MacroDerm L was also studied at the water/air interface at 298 K on pure water subphase. The behavior of surface areas, surface compressional moduli and collapse pressure as a function of molar ratios of components shows that MacroDerm A and MacroDerm L are miscible. Received: 17 December 1996 Accepted: 5 March 1997  相似文献   

4.
The action mechanism of surfactant protein C (SP-C) in the lung surfactant monolayers is studied. On the basis of the SP-C molecular structure, a detailed interaction model is developed to describe the interaction of phospholipids/SP-C in the lung surfactant monolayers. It is supposed that: (1) in an alveolus monolayer, SP-C molecules are surrounded by phosphatidylglycerol (PG). When the monolayer is compressed, SP-C molecules can promote PG molecules to be squeezed out; (2) during compressing of the monolayer, unsaturated-PG molecules form a collapse pit firstly when liquid-expanded state (LE) components achieve the collapse pressure. Then, SP-C's alpha-helix is attracted by the collapse pit and both alpha-helix and PG molecules are squeezed out speedily. Finally, the squeezed-out matters can form a lipid-protein aggregation in the subphase. The lipid-protein aggregation, in the centre of which, there is the hydrophobic alpha-helix section surrounded by PG molecules; (3) during the monolayer expanding, because of the increasing of the monolayer's surface tension, the structure of the lipid-protein aggregation is disturbed and reinserts into the surface of the monolayer rapidly. On the basis of analyzing the energies change of the squeeze-out process, a mathematical model is obtained to calculate the squeezed-out number of DPPG molecules when a SP-C molecule squeezes out in a monolayer. According to the model, it is concluded that SP-C has the capability to promote the squeeze-out and the reinsertion of most of PG component in an alveolus monolayer, the prediction data agree well with the experimental data.  相似文献   

5.
A new method for visualizing solid phase surfactant monolayers is presented. This method utilizes infrared (IR) imaging of the surface of a warm subphase covered by the monolayer. When the subphase is deep, natural convection occurs, resulting in a complex surface temperature field that is easily visualized using an IR camera. The presence of a surfactant monolayer changes the hydrodynamic boundary condition at the interface, dramatically altering the surface temperature field, and permitting the differentiation of surfactant-covered and surfactant-free regions. In this work, solid phase monolayers are imaged using this IR method. Fractures in the monolayer are dramatically visualized because of the sudden elimination of surfactant in the region opened up by the crack. The method is demonstrated in a wind/water tunnel, where a stearic acid monolayer is deposited and a crack is created through shear on the surfactant surface, created by suddenly increasing the velocity of the air over the water.  相似文献   

6.
The molecular organization of monolayers at the air–water interface of an amphiphilic azo-phane with unbranched n-dodecyl substituents differs from that of the analog with bulky ‘tert’-octyl substituents as seen in the area per molecule. Complexation with sodium ions from the aqueous subphase, as deduced from measurement of the surface potential, is facilitated by closer approach of the macrocycles for the n-dodecyl-substituted azo-phane, since two macrocycles form the complex with Na+. The compensation of the positive charge after complexation in the case of a two-component monolayer of the n-dodecyl-substitued azo-phane and octadecanoic acid, molar ratio azo-phane to acid = 2:1, enhances even more the complexation. The complex equilibrium constants and the contributions of the hydrophilic head group region to the surface potential are evaluated from Langmuir isotherm fits to the dependencies of the surface potential on the NaCl concentration in the aqueous subphase for the three monolayer systems investigated, i.e., the two different pure azo-phane monolayers and the two-component monolayer.  相似文献   

7.
Surface pressure-area, surface potential-area, and dipole moment-area isotherms were obtained for monolayers made from a partially fluorinated surfactant, (perfluorooctyl)undecyldimorpholinophosphate (F8H11DMP), dipalmitoylphosphatidylcholine (DPPC), and their combinations. Monolayers, spread on a 0.15 M NaCl subphase, were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, and fluorescence microscopy. Surface potentials were analyzed using the three-layer model proposed by Demchak and Fort. The contribution of the dimorpholinophosphate polar head group of F8H11DMP to the vertical component of the dipole moment was estimated to be 4.99 D. The linear variation of the phase transition pressure as a function of F8H11DMP molar fraction (X(F8H11DMP)) demonstrated that DPPC and F8H11DMP are miscible in the monolayer. This result was confirmed by deviations from the additivity rule observed when plotting the molecular areas and the surface potentials as a function of X(F8H11DMP) over the whole range of surface pressures investigated. Assuming a regular surface mixture, the Joos equation, which was used for the analysis of the collapse pressure of mixed monolayers, allowed calculation of the interaction parameter (xi=-1.3) and the energy of interaction (Delta epsilon =537 Jmol(-1)) between DPPC and F8H11DMP. The miscibility of DPPC and F8H11DMP within the monolayer was also supported by fluorescence microscopy. Examination of the observed flower-like patterns showed that F8H11DMP favors dissolution of the ordered LC phase domains of DPPC, a feature that may be key to the use of phospholipid preparations as lung surfactants.  相似文献   

8.
The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (?-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of ?-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase. The facts indicate the presence of coordination between Ca2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.  相似文献   

9.
通过表面压-分子面积等温线的测定,考察了亚相pH对气水界面上的维生素E(VE)/二棕榈酰基磷脂酰胆碱单分子膜的影响。亚相pH降低不改变DPPC单分子膜的崩裂压,但使VE单分子膜的崩裂压明显增大,不改变VE单分子膜的平均分子面积,但使DPPC单分子膜凝缩,低表面压下,VE对DPPC单分子膜的膨胀作用在纯水上很小,在pH为1的亚相上则很明显,这提示在低pH的亚相上,VE/DPPC单分子膜中的极性头基间  相似文献   

10.
Effects of the subphase temperature on the surface pressure (pi)-area (A) isotherms of mixed monolayers of miltefosine (hexadecylphosphocholine), a potential anticancer drug, and cholesterol were investigated at the air/water interface, which were supplemented with Brewster angle microscopy (BAM) observations. Comparison of the collapse pressure values, mean molecular areas, excess areas and excess free energy of mixing between the mixed monolayer at various molar ratios and the pure component monolayers showed that, regardless of the subphase temperature, the investigated miltefosine-cholesterol system is much more stable than that the pure component monolayers, suggesting strong attractive interactions between miltefosine and cholesterol in mixed monolayers. As a consequence, it was postulated that stable "complexes" of the two components could form at the interface, for which stoichiometry may vary with the subphase temperature. Such "surface complexes" should be responsible for the contraction of the mean molecular area and thus the high stability of the mixed monolayer.  相似文献   

11.
Survanta is a replacement lung surfactant (LS) used in the treatment of respiratory distress syndrome (RDS), the fourth leading cause of infant mortality in the United States. It consists of purified LS from bovine sources and retains the surfactant proteins (SP) SP-B and SP-C, both thought to be important in proper respiratory function. As such, it provides a useful and biologically relevant model system to probe the structure and function of natural LS. Here, we report results from high-resolution studies on model monolayers formed from Survanta to probe the mechanism of collapse at high surface pressure. Our results show the formation of two different collapse structures. At 62 mN/m, slightly below the collapse pressure, monolayer collapse occurs through buckling. Confocal fluorescence measurements on supported films reveal regions of overlapping phase structure in the films that mark the transition from monolayer to multilayer. Simultaneous near-field scanning optical microscopy fluorescence and force measurements show that the transition seen in the fluorescence measurements accompanies corresponding approximately 4-5 nm changes in membrane topography. This change in height is consistent with bilayer formation on monolayer collapse. Analysis of the phase structure near the transitions also suggests that the buckling occurs from a continuous film. However, when the film is compressed to its collapse pressure of 65 mN/m, buckling is no longer evident in the collapsed region. In addition, multilayers and lipid-protein aggregates that are up to 40 nm higher than the monolayer are observed in the collapsed film at this pressure.  相似文献   

12.
Negatively charged magnetite nanoparticles with an average size of about 10 nm have been synthesized by a chemical coprecipitation method using sodium dodecyl benzene sulphonate as a surface modifying reagent. Composite Langmuir monolayer of Fe3O4 nanoparticles and geminus surfactant 1,3‐propylenebis(dodecyldimethylammonium) dibromide (C12‐C3‐C12) was prepared on the subphase of Fe3O4 nanoparticle hydrosols. In the presence of the magnetite nanoparticles, the collapse pressure of the composite monolayer and the limited mean molecular area of C12‐C3‐C12 are higher than those on pure water subphase. Transmission electron microscopy observation of a C12‐C3‐C12/Fe3O4 nanoparticle complex shows that Fe3O4 nanoparticles and geminus surfactant had an unexpected hexagonal nanoarchitecture at the air‐liquid interface when the surface pressure of the composite monolayer increased to about 12 mN·m?1. A mechanism for constructing the particular nanopatterned configuration of the C12‐C3‐C12/Fe3O4 nanoparticle complex in the Langmuir layer directly from the unique molecular structure of the geminus surfactant and the interfacial interactions between C12‐C3‐C12 and the components in the subphase was proposed.  相似文献   

13.
The monolayer properties of some single-chain polyprenyl phosphates (phytanyl, phytyl, and geranylgeranyl phosphates), which we regard as hypothetical primitive membrane lipids, were investigated at the air-water interface by surface pressure-area (pi-A) isotherm measurements. The molecular area/ pressure at various pH conditions dependence revealed the acid dissociation constants (pKa values) of the phosphate. The pKa values thus obtained at the air-water interface (pKa1 = 7.1 and pKa2 = 9.4 for phytanyl phosphate) were significantly shifted to higher pH than those observed in the bilayer state in water (pKa1 = 2.9 and pKa2 = 7.8). The difference in pKa values leads to a stability of the phosphate as both monolayer and bilayer states in a pH range of 2-6. In addition, the presence of ions such as sodium, magnesium, calcium, and lanthanum in the subphase significantly altered the stability of the polyprenyl phosphate monolayers, as shown by the determination of monolayer collapse and compression/expansion hysteresis. Although sodium ions in the subphase showed only a weak effect on the stabilization of the monolayer, addition of magnesium ions or of a small amount of calcium ions significantly suppressed the dissolution of the monolayer into the subphase and increased its mechanical stability against collapse. In contrast, the presence of larger amounts of calcium or of lanthanum ions induced collapse of the monolayers. Based on these experimental facts, a plausible scenario for the formation of primitive cell membrane by transformation of a monolayer to vesicle structures is proposed.  相似文献   

14.
After deposition of immiscible, surface-active liquids on thin liquid films of higher surface tension, Marangoni stresses thin the liquid film around the surfactant droplet and induce a radially outward flow. We observed an oscillatory instability, caused by temporary trapping and subsequent release of subphase liquid from underneath the surfactant droplet. Height profiles of the thin liquid films were monitored using optical interferometry and fluorescence microscopy, both in the vicinity of the deposited surfactant droplet and at larger distances. Numerical calculations based on the lubrication approximation are compared to the experimental results. Good agreement between the experimental and calculated far-field dynamics and values of the spreading exponents was found.  相似文献   

15.
2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ~6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.  相似文献   

16.
Summary The surface pressure — area per molecule curves (F A curves) of mixed monolayers of phosphatidyl serine (PS) and cholesteryl acetate (CA), and those of dimyristoyl phosphatidyl choline (DMPC) and CA were measured on aqueous surfaces. ThoseF — A curves showed kink points, which were considered to be the collapse point of the monolayers. Then, the collapse pressure was determined as the surface pressure at the collapse points. On the basis of the phase diagrams, drawn by plotting the measured values of the collapse pressure as a function of the composition, the miscibility of the lipids in the mixed monolayers was discussed. Thus, it has been concluded that PS and CA, and also DMPC and CA are completely miscible in the monolayers on water. On the other hand, it has been also found that, on aqueous solutions of 100 mM CaCl2, PS and CA are immiscible in the monolayers because of the aggregation of PS molecules induced by Cat2+.  相似文献   

17.
Properties of the monolayers of collagen isolated from the sclera of pig's eye are studied at the air–water interface with increasing tert-butanol or n-hexanol concentrations in a subphase. In the case of aqueous n-hexanol solutions, its adsorption on the subphase surface results in the formation of mixed monolayer whose properties depend on n-hexanol concentration in the subphase and the ratio between the number of alcohol and collagen molecules in the monolayer. At higher n-hexanol surface concentration, the phase separation of the monolayer into the domains of the condensed phase of alcohol and fibrous collagen occurs. A decrease in water activity in the presence of tert-butanol leads to a drastic reduction of collagen surface activity. This effect can be explained by both the constrained collagen spreading on the surface of tert-BuOH solutions and adsorption of alcohol molecules on collagen resulting in macromolecule hydrophilization. Alcohol critical concentrations are disclosed above which collagen monolayers are not formed.  相似文献   

18.
Microcin J25 forms stable monolayers at the air-water interface showing a collapse at a surface pressure of 5 mN/m, 220 mV of surface potential, and 6 fV per squared centimeter of surface potential per unit of molecular surface density. The adsorption of microcin J25 from the subphase at clean interfaces leads to a rise of 10 mN/m in surface pressure and a surface potential of 220 mV. From these data microcin appears to be a poor surfactant per se. Nevertheless, the interaction with the lipid monolayer further increase the stability of the peptide at the interface depending on the mode in which the monolayer is formed. Spreading with egg PC leads to nonideal mixing up to 7 mN/m, with hyperpolarization and expansion of components at the interface, with a small excess free energy of mixing caused by favorable contributions to entropy due to molecular area expansion compensating for the unfavorable enthalpy changes arising from repulsive dipolar interactions. Above 7 mN/m microcin is squeezed out, leaving a film of pure phospholipid. Nevertheless, the presence of lipid at 10 and 20 mN/m stabilize further microcin at the interface and adsorption from the subphase proceeds up to 30 mN/m, equivalent to surface pressure in bilayers.  相似文献   

19.
Two-component Langmuir monolayers formed on a subphase of 0.5M sodium chloride solution were investigated for two different cerebrosides (LMC-1 and LMC-2) with steroids of cholesterol (Ch) and cholesteryl sodium sulfate (Ch-S); i.e. LMC-1/Ch, LMC-1/Ch-S, LMC-2/Ch, and LMC-2/Ch-S were examined in terms of surface pressure (pi), the surface potential (DeltaV) and the dipole moment (mu( perpendicular)) as a function of surface area (A) by employing the Langmuir method, the ionizing electrode method, and the fluorescence microscopy. Surface potentials (DeltaV) of steroids were analyzed using the three-layer model proposed by Demchak and Fort. The miscibility of cerebrosides and steroids in the insoluble monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the steroid molar fraction (X(steroid)) based upon the additivity rule. From the A-X(steroid) and DeltaV(m)-X(steroid) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the different surface pressures. The PMA and APSP with the mole fraction were discussed for the miscible system. Judging from the two-dimensional phase diagrams, they can be classified into two types. The first is a completely immiscible type; the combination of cerebrosides with cholesterol. The second is a negative azeotropic type, where cerebrosides and cholesteryl sodium sulfate are completely miscible both in the expanded state and in the condensed state. In addition, a regular surface mixture (the Joos equation for the analysis of the collapse pressure of two-component monolayers) allowed calculation of the interaction parameter (xi) and the interaction energy (-Delta epsilon) between the cerebrosides and Ch-S. The miscibility of cerebroside and steroid components in the monolayer state was also supported by fluorescence microscopy.  相似文献   

20.
The surface pressure (pi)-area (A), the surface potential (DeltaV)-A and the dipole moment (mu( perpendicular))-A isotherms were obtained for six cerebrosides of LLC-2, LLC-2-1, LLC-2-8, LLC-2-10, LLC-2-12, and LLC-2-15, which were isolated from Linckia laevigata, and two-component monolayers of two different cerebrosides (LLC-2 and LLC-2-8) with phospholipid of dipalmitoylphosphatidylcholine (DPPC) on a subphase of 0.15 M sodium chloride solution as a function of cerebroside compositions in the two-component systems by employing the Wilhelmy method, the ionizing electrode method, and the fluorescence microscopy. The new finding was that LLC-2 showed a stable and liquid expanded type film. Four of them (LLC-2-8, -10, -12, and -15) had the phase transition from the liquid-expanded (LE) to the liquid-condensed (LC) states at 298.2 K. The apparent molar quantity changes (Deltas(gamma), Deltah(gamma), and Deltau(gamma)) on their phase transition on 0.15M at 298.2 K were calculated. The miscibility of cerebroside and phospholipid in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the cerebroside molar fraction (X(cerebroside)), using the additivity rule. From the A-X(cerebroside) and DeltaV(m)-X(phospholipid) plots, a partial molecular surface area (PMA) and an apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible systems. Judging from the two-dimensional phase diagrams, these were found to be one type, a positive azeotropic type; all the cerebrosides were miscible with DPPC. Furthermore, assuming a regular surface mixture, the Joos equation for the analysis of the collapse pressure of two-component monolayers allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between the cerebrosides and DPPC. The miscibility of cerebroside and phospholipid components in the monolayer state was also supported by fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号