首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peroxide-cured isoprene rubber with various amounts of stearic acid and N-isopropyl-N-phenyl-p-phenylenediamine (i-PPD) was prepared. Processability, cure and dynamic mechanical properties of compounds were investigated. It has been found that stearic acid affects only the uncured compounds in terms of processability by acting as a lubricant, and plays no significant role in curing and dynamic mechanical properties. By contrast, i-PPD as an amine-based antioxidant shows pronounced effect on processability, cure and dynamic mechanical properties. The addition of i-PPD up to 2 phr could increase Mooney viscosity due to a thermal stabilization during high shear mixing. Exceeding this concentration, i-PPD shows plasticizing effect leading to a decrease in Mooney viscosity. Additionally, it has been shown that the addition of i-PPD reduces the crosslink density affecting remarkably the dynamic mechanical properties of compounds.  相似文献   

2.
Traditional rubber industries rely heavily on petroleum-based materials, such as carbon black (CB). The present study aims at mitigating the environmental challenges, through partial replacement of CB, while simultaneously consuming an easily accessible agricultural waste. Accordingly, cellulose nanofibre (CNF) was extracted from wheat-straw using chemo-mechanical process, which in-turn was used for fabrication of CNF enabled rubber nanocomposites. Microstructural observation of CNF confirmed nanometric defibrillation of cellulose. A variety of tests were performed on the nanocomposites towards exploring their structure-property correlations, curing-behaviour, thermal degradability and mechanical (static and dynamic) properties. Overall, considerable enhancement in properties such as tensile strength and strain energy density could be realized, owing to synergistic use of CNF and CB in rubber, allowing for replacement of up to 15 phr CB. These were further augmented by significant improvements in dynamic rolling-resistance, traction and stress-softening behaviour. The results were especially significant, considering that the improvements could be achieved without any modification of CNF surface, thereby establishing its potential for development of environment friendly rubber nanocomposites.  相似文献   

3.
This work studied the possibility of utilizing nitrile rubber (NBR) to modify the impact properties of poly (ethylene-naphthalate) (PEN). The PEN/NBR ratio used changed from 100/0 to 60/40. At the same time, glass fibers (GF), 40% weight of the PEN component, were used to reinforce the blends to compensate for the loss of mechanical properties of PEN by incorporation of NBR. The results showed that the impact strength of the PEN/GF/NBR blend (PEN/NBR = 60/40) was increased up to 27.6J/m, nearly 5 times higher than that of the neat PEN. Meanwhile, the tensile strength and flexural strength were still maintained at as high as 66.1 MPa and 98.2 MPa, respectively. Dynamic vulcanization further improved the mechanical properties of the PEN/GF/NBR blends, which provided routes to the design of new PEN/elastomer blends. Other properties of the PEN/GF/NBR blends were also investigated in terms of morphology of fractured surface, dynamic mechanical behavior, thermal stability and crystallization, by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively.  相似文献   

4.
The effects of high-temperature curing and overcuring on the cure characteristics, crosslink structure, physical properties and dynamic mechanical properties (DMPs) of gum and carbon black (N330) filled natural rubber (NR) vulcanizates cured with conventional (CV), semi-efficient (SEV) and efficient (EV) cure systems, which have about the same total crosslink densities under a moderate curing temperature of 150°C, were investigated. The gum NR vulcanizates cured with CV, SEV and EV curing systems have about the same glass transition temperature (Tg) and tan δ values below the temperature of about 0°C, but showed some apparent differences in the tan δ values increasing in the order CVG′ and tan δ values above Tg higher than those of the gum NR vulcanizates.

High-temperature curing and overcuring cause decreases to various extents in the cure plateau torque, Shore A hardness, 300% modulus and tensile strength, and lead to apparent changes in the DMPs. Typically, there is an increase in Tg of all three kinds of gum and N330-filled NR vulcanizates because of changes in the total crosslink densities and crosslink types. The CV vulcanizates show the most significant change in cure characteristics, physical properties and DMPs since the highest content of polysulfidic crosslinks appears in the CV vulcanizate, causing the highest level of reversion and having a dominant effect on the properties.  相似文献   


5.
《先进技术聚合物》2018,29(1):649-657
Dichlorocarbene modified butadiene rubber (DCBR) was prepared via the addition of the dichlorocarbene group in the presence of 2 phase transfer agents (cetyltrimethylammonium bromide and tetraethylammonium chloride). The effects of the reaction temperature and time, amount of dichlorocarbene precursor, and the type and amount of phase transfer agent on the chlorine content were investigated. The highest chlorine content (30%) in DCBR was obtained using 0.062 mol chloroform and 0.003 mol cetyltrimethylammonium bromide at room temperature for 19 hours although 27.9% was obtained after 12 hours. The kinetics of this dichlorocarbene modification was best described by the pseudo–first order rate law with 2 rate constants. For practical applications, the DCBR with chlorine contents of 10%, 20%, or 30% were blended with natural rubber (NR) and then vulcanized using the sulfur‐curing system. Although the polarity of DCBR was increased, a good compatibility between NR and DCBR still existed, resulting in improved mechanical properties. The oil resistance, flame retardant, and ozone resistance properties of the NR/DCBR blend vulcanizates were enhanced compared to those of a NR/butadiene rubber blend vulcanizate, which was related to the amount of chlorine incorporated into the DCBR.  相似文献   

6.
The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites were studied. Scorch time, t2 and cure time, t90 of the composites decrease with increasing filler loading and with the presence of a silane coupling agent, Si69. Mooney viscosity also increases with increasing filler loading but at a similar filler loading shows lower value with the presence of Si69. The mechanical properties of composites viz tensile strength, tear strength, hardness and tensile modulus were also improved with the addition of Si69.  相似文献   

7.
The influence of Shorea robusta natural filler loading (5, 10, 15, 20, and 25 v/v%) on the mechanical, dynamic mechanical, biodegradability, and thermal stability of the polyester composite was analyzed. The composites were fabricated using hand lay-up method. The maximum mechanical properties, storage modulus, and glass transition temperature were observed for the composite with 20 v/v% filler. The peak height of Tanδ was found to be lesser for the same. Thermal analysis results revealed that the thermal stability of composite increased with the incorporation of Shorea robusta as natural filler. Biodegradability testing showed that the addition of filler resulted in weight loss of the composite under soil burial test.  相似文献   

8.
The present work aims to prepare thermal and oxidation resistant Natural Rubber (NR) composites using antioxidant-modified nanosilica (MNS). The thermo-oxidative aging performance of the composites was evaluated by the variations in mechanical properties after aging at 100 °C for 24 h. The performance was further monitored through Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, and Dynamic Mechanical Analysis. NR nanocomposite with 1–7.5 phr nanosilica (NS) and 3 phr MNS were prepared and its rheological properties were studied. A comparative study of the theoretical models yielded that modified Guth-Gold equation predicted Young's modulus better than other models. Thermal stability of natural rubber MNS composite was improved by 10 °C with pre-eminent mechanical properties like tensile strength and heat build-up. A linear relationship of compression set with modulus of all composites were also established. Equilibrium swelling test revealed improved crosslink density in NR MNS composite. The strong interaction between antioxidant and nanosilica enabled low migration of antioxidant in NR MNS composite. Hence its protective function after aging showed more effective than NR NS composites. These versatile functional properties of NR MNS composite suggest its potential application in electrical, electronic and high performance rubber products.  相似文献   

9.
Spent coffee ground (SCG) contains a variety of organic compounds such as fatty acids, amino acids, polyphenols, polysaccharides, etc. In this study, purification of SCG was carried out by alkalization and bleaching treatment and the purified SCG (PSCG) was characterized by various techniques, i.e., FTIR, XRD, BET, SEM and TGA. PSCG was later treated with Bis-triethoxysilylpropyl tetrasulfide (TESPT). Both PSCG and TESPT-treated PSCG were then incorporated into natural rubber (NR) to investigate their reinforcement magnitude in the bio-composite. Results revealed the eradication of lignin and other non-polysaccharide components after the purification leading to the significant increases in specific surface area and cellulose content of PSCG. Although the addition of PSCG into NR showed cure time reduction in association with the increased modulus and hardness, its reinforcement was not very high due to the large particle size and the abundance of hydroxyl groups in PSCG. The TESPT treatment significantly improved the reinforcement of PSCG due to the increases in rubber-filler interaction and crosslink density. However, the reinforcement of both PSCG and TESPT-treated PSCG is still relatively low compared to the commercial nanofillers and, thus, they can be considered as a cheap and eco-friendly filler in NR.  相似文献   

10.
The utilization of epoxy shape memory polymer composite (SMPCs) as engineering materials for deployable structures has attracted considerable attention in recent decades due to high strength and satisfactory stiffness in comparison with shape memory polymers (SMPs). Knowledge of static and dynamic mechanical properties is essential for analyzing structural behavior and recovery properties, especially for new epoxy SMPCs. In this paper, a new weave reinforced epoxy shape memory polymer composite was prepared with satin weave technique and resin transfer molding technique. Uniaxial tensile tests and dynamic mechanical analysis were carried out to obtain basic mechanical properties and glass transition temperatures, respectively.The tensile strength and breaking elongation of warp specimens were comparable with those of weft specimens. The increment of elastic modulus and hysteresis loop areas became smaller with loading cycles, meaning that cyclic tests could obtain approximate stable mechanical properties. For dynamic mechanical properties, glass transition temperature (Tg) obtained from storage modulus curves was lower than that determined from tan delta curves and Tgs in the warp and weft directions were similar (29.4 °C vs 29.7 °C). Moreover, the storage modulus in response to Tg was two orders of magnitude less than that with respect to low temperature, which demonstrated the easy processibility of epoxy SMPCs near glass transition temperature. In general, this study could provide useful observations and basic mechanical properties of new epoxy SMPCs.  相似文献   

11.
Styrene‐butadiene rubber (SBR) vulcanizates with graded network‐chain densities in the thickness direction were prepared by layering and heat pressing the compounding sheets. The effect of the gradient of network‐chain density on the mechanical properties of the graded rubber vulcanizates was investigated in comparison with those of SBR vulcanizates that were prepared from the homogeneous compounding sheets. The matrix with a high network‐chain density exclusively affected the mechanical properties of the graded rubber vulcanizates when the gradient was given in the thickness direction. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 358–364, 2002; DOI 10.1002/polb.10096  相似文献   

12.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

13.
The effect of blend ratio and compatibilization on dynamic mechanical properties of PP/NBR blends was investigated at different temperatures. The storage modulus of the blend decreased with increase in rubber content and shows two Tg's indicating the incompatibility of the system. Various composite models have been used to predict the experimental viscoelastic data. The Takayanagi model fit well with the experimental values. The addition of phenolic modified polypropylene (Ph-PP) and maleic modified polypropylene (MA-PP) improved the storage modulus of the blend at lower temperatures. The enhancement in storage modulus was correlated with the change in domain size of dispersed NBR particles. The effect of dynamic vulcanization using sulfur, peroxide, and mixed system on viscoelastic behavior was also studied. Among these peroxide system shows the highest modulus. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2309–2327, 1997  相似文献   

14.
Natural rubber is reinforced with a novel type of grass fiber (Cyperus Tegetum Rox b). The effects of fiber loading of different mesh sizes on curing characteristics and mechanical properties of grass fiber filled natural rubber composite are studied. Since 400 mesh grass fiber loaded natural rubber composite shows superior mechanical properties, therefore the effect of silane coupling agent was studied for this particular composite. Here composites were prepared by using water leached grass fiber. Optimum cure time increases with the increase in fiber loading but the change in scorch time is less. The same trend of increase in optimum cure time is observed in the presence of Si69. But the value is higher compared to that of rubber composite without Si69. With increase in the fiber loading, modulus and hardness of the composite increases but tensile strength decreases. The mechanical properties of the composite, namely moduli at 200 and 300% elongation and hardness increase in the presence of Si69 but tensile strength is less compared to that of the composite without Si69. Elongation at break is not much affected due to the presence of Si69. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Research on short fibers/rubber foam composites is rarely found in the literature. In this paper, microcellular rubber foams unfilled (MF), strengthened by pretreated short fibers (MFPS) and untreated short fibers (MFUS) are prepared, respectively. The microstructure and mechanical properties of the three composites have been studied via scanning electron microscope (SEM) and mechanical testing, respectively. The SEM results show that both pretreated and untreated short fibers disperse uniformly in the composites and in bidimensional orientation. Moreover, the pretreated short fibers have much better adhesion with the rubber matrix than untreated ones. The experimental results also indicate that the introduction of short fibers is mainly responsible for the great enhancement of most mechanical properties of the microcellular rubber foams, and the good interfacial adhesion of the short fibers with the matrix contributes to the more extensive improvement in the mechanical properties. It is also found that the reinforcement effect of short fibers to compressive modulus strongly depends on the density of microcellular rubber foams, the orientation of short fiber and the deformation ratio. The compressive modulus of microcellular rubber foams at the normalized density less than 0.70 and beyond 0.70 is predicted by the modified Simple Blending Model and the Halpin-Kerner Model, respectively. The theoretically predicted values are in good accordance with the experimental results.  相似文献   

16.
In this study, a series of reinforced polyimide (PI)/carbon fiber (CF) composite foams were fabricated through thermal foaming of polyester ammonium salt (PEAS) precursor powders. The PEAS precursor powders containing different contents of chopped CF were synthesized from benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride (BTDA) and 4,4′‐diaminodiphenyl ether (ODA). The effects of different CF loadings on foaming behavior of PEAS/CF composite precursor powders, final cellular morphology, and physical properties of PI composite foams were investigated. The results revealed that the chopped CF acted as nucleation agent in the foaming process. The dispersion of CF can be evaluated using digital microscope. It is interesting to find that the chopped CF were highly oriented along the direction of cell arrises. As a result, the mechanical properties of PI foams were significantly enhanced owing to the incorporation of chopped CF. Furthermore, the thermal stability of PI composite foams were also slightly improved owing to fine dispersion of CF. In addition, the PI/CF composite foam shows uniform cell size distribution and the best comprehensive physical properties as chopped CF loading at around 6 wt%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, the blend system of diglycidyl ether of bisphenol A and PMR-15 polyimide is investigated in terms of thermal and dynamic mechanical interfacial properties of the casting specimens. The thermal stabilities are studied by thermogravimetric and thermomechanical analyses, and the dynamic mechanical properties are carried out by dynamic mechanical analysis. The results show that the thermal stabilities based on the initial decomposition temperature, the integral procedural decomposition temperature, and the glass transition temperature are increased with increasing PMR-15 content. The crosslinking density (rho) of the blend system is increased at 10 phr of PMR-15, compared with that of neat epoxy. Mechanical interfacial properties measured in the context of critical stress intensity factor and critical strain energy release rate show similar behaviors with E(a) and rho, probably due to the increase in intermolecular interactions or hydrogen bondings in polymer chains.  相似文献   

18.
The crosslinked structure formed by the metal coordination bonding provides excellent and new properties for rubber materials. Herein, the crosslinking of acrylonitrile‐butadiene rubber (NBR) is induced by introducing aluminum ammonium sulfate (NH4Al(SO4)2·12H2O) particles. The crosslinking behavior, morphology, mechanical properties, and the Akron abrasion resistance of NBR/NH4Al(SO4)2·12H2O composites were fully explored. The results show that the three‐dimensional crosslinking structure is held together by metal–ligand coordination bonds between the nitrile group and AI(III). The coordination crosslink density exhibits a considerable increase with the addition of NH4Al(SO4)2·12H2O. Thus, the mechanical properties and abrasion resistance of the obtained composites are better than that of NBR/sulfur system. Interestingly, the elongation at break for NBR/NH4Al(SO4)2·12H2O composites is over 2000% due to the nature of coordination bonds. The abrasion volume loss decreases to 0.4 cm3 for NBR/NH4Al(SO4)2·12H2O composites with 20 phr NH4Al(SO4)2·12H2O particles as compared to 0.75 cm3 for NBR/sulfur system. The obtained NBR composites with facile preparation and excellent mechanical properties make the composites based on metal coordination bonding attractive for practical use. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 879–886  相似文献   

19.
Methyl‐methacrylate‐grafted natural rubber was prepared by free radical polymerization of methyl methacrylate in natural rubber latex, and their structure and dynamics were investigated by dynamic mechanical analysis and solid‐state nuclear magnetic resonance (NMR). Samples were prepared by chemical initiation and high‐energy radiation. The changes of glass transition temperature and tan δ max with different total poly(methyl methacrylate (PMMA) content are reported. The effect of the change in composition in copolymers on tan δ peak width, tan δ max, and area under the tan δ curve are used to understand the miscibility and damping properties. Solid‐state 13C‐NMR measurements were carried out to determine several relaxation time parameters, such as rotating frame and laboratory frame proton and carbon relaxation times. Cross polarization times and carbon relaxation times were interpreted based on the changes in the molecular motion. Proton relaxation times were interpreted based on the heterogeneity of the matrix. Results confirmed phase separation and a presence of an interfacial region. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1141–1153, 1999  相似文献   

20.
Electron beam irradiation of poly(iminohexamethylene-iminoadipoyl) (Polyamide-6,6) films was carried out over a range of irradiation doses (20–500 kGy) in air. The mechanical properties were studied and the optimum radiation dose was 200 kGy, where the ultimate tensile stress (UTS), 10% modulus, elongation at break (EB) and toughness showed significant improvement over the unirradiated film. At a dose of 200 kGy, the UTS was improved by 19%, the 10% modulus by 9% and the EB by 200% over the control. The dynamic mechanical properties of the films were studied in the temperature region 303–473 K to observe the changes in the glass transition temperature (Tg) and loss tangent (tan δ) with radiation dose. The storage modulus of the film receiving a radiation dose of 200 kGy was higher than the unirradiated film. The water uptake characteristics of the Polyamide-6,6 films were investigated. The water uptake was less for the films that received a radiation dose of 200 and 500 kGy than the unirradiated film. The role of crystallinity, crosslinking and chain scission in affecting the tensile, dynamic mechanical and water absorption properties was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号