首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyurethane (PU) composite foams were successfully reinforced with different concentrations (1 wt%, 2 wt%, 5 wt%) of nutmeg filler. The effect of nutmeg filler concentration on mechanical, thermal, antimicrobial and anti-aging properties of PU composite foams was investigated. PU foams were examined by rheological behavior, processing parameters, cellular structure (Scanning Electron Microscopy analysis), mechanical properties (compression test, impact test, three-point bending test, impact strength), thermal properties (Thermogravimetric Analysis), viscoelastic behavior (Dynamic Mechanical Analysis) as well as selected application properties (thermal conductivity, flammability, apparent density, dimensional stability, surface hydrophobicity, water absorption, color characteristic). In order to Disc Diffusion Method, all PU composites were tested against selected bacteria (Escherichia coli and Staphylococcus aureus). Based on the results, it can be concluded that the addition of 1 wt% of nutmeg filler leads to PU composite foams with improved compression strength (e.g. improvement by ~19%), higher flexural strength (e.g. increase of ~11%), improved impact strength (e.g. increase of ~32%) and comparable thermal conductivity (0.023–0.034 W m−1 K−1). Moreover, the incorporation of nutmeg filler has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 5 wt% of nutmeg filler significantly reduced the peak of heat release rate (pHRR) by ca. 60% compared with that of unmodified PU foam. It has been also proved that nutmeg filler may act as a natural anti-aging compound of PU foams. The incorporation of nutmeg filler in each amount successfully improved the stabilization of PU composite foams. Based on the antibacterial results, it has been shown that the addition of nutmeg filler significantly improved the antibacterial properties of PU composite foams against both Gram-positive and Gram-negative bacteria.  相似文献   

2.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

3.
The effect of types of fillers on mechanical properties of rigid polyurethane composite samples was investigated. Polyurethane (PU) composites were prepared using a molasses polyol (MP, a mixture of molasses and polyethylene glycol, Mw=200) diphenylmethane diisocyanate (MDI) and fillers. The following plant particles, bamboo powder, roast bamboo powder, wood meal, coffee grounds, ground coffee bean parchment and cellulose powder, were used as fillers. The mixture of MP and fillers was reacted with MDI by adding an adequate amount of acetone as a solvent. The content of fillers was defined as the ratio of filler weight to total weight of polyol and fillers. The filler content was varied from 10 to 90 wt%. Polyurethane (PU) composites were prepared using fillers with MP. Lengths of major axis and minor axis for each particle regarded as an ellipse were measured using an optical microscope. Averages of diameter and aspect ratio were derived for each plant particle. The relationships between these average values and the mechanical properties, such as strength and elastic modulus, determined by the compression tests were investigated. The effect of filler content was estimated using the apparent volume ratio which is determined as the ratio of the apparent volume of fillers to the reciprocal values of the apparent density of samples. The master curves of the relationships between the specific values of mechanical properties and the apparent volume ratio were obtained. It was found that the compression strength and the elastic modulus for composite samples with different fillers showed maximum values at average aspect ratio around 3. It was also found that the apparent volume ratio, where the mechanical properties showed maximums, decreases with increasing aspect ratio. Using master curves, it is possible to evaluate the mechanical properties of plant particle filled polyurethane composites are described.  相似文献   

4.
Thermoplastic polyurethane (PU) elastomer, prepared from poly(tetramethylene glycol) and methyl diphenyl diisocyanate, was blended with boron nitride (BN) to fabricate a thermally conductive interface material. BN treated by a silane coupling agent (BN―NH2) and PU‐grafted BN were prepared to fabricate a composite that has better thermal conductivity and mechanical strength. The surface‐modified filler showed enhanced dispersibility and affinity because of the surface treatment with functional groups that affected the surface free energy, along with the structural similarity of the doped crystallized diisocyanate molecule with the matrix. The thermal conductivity increased from 0.349 to 0.467 W mk?1 on 20 wt% PU‐grafted BN loading that is a 1.34‐fold higher value than in the case of pristine BN loading at the same weight fraction. Moreover, the number of BN particles acting as defects, thereby reducing the mechanical strength, is decreased because of strong adhesion. We can conclude that these composite materials may be promising materials for a significant performance improvement in terms of both the thermal and mechanical properties of PU‐based polymers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Rigid polyurethane (PU) foams were successfully filled with different weight ratios of melamine (1 wt%, 5 wt%, 10 wt%), silica (0.1 wt%) and ionic liquid, 1-Ethyl-3-methylimidazolium chloride, [EMIM]Cl (0.3 wt%). The aim of this study was to improve the flame retardancy of PU foams and to develop the synergistic effect between melamine, silica and ionic liquid on the flame-retardant PU foams. The influence of different loadings of the fillers was examined. The results showed that in comparison with unfilled foam, all modified compositions are characterized by higher density (41–46 kg m−3), greater compression strength (134–148 kPa), and comparable thermal conductivity (0.023–0.026 W m−1 K−1). Moreover, the reaction to fire of the PU composites has been investigated by the cone calorimeter test. The results showed that the fire resistance of PU foams containing as little as 1 wt% of melamine is significantly improved. For example, the results from the cone calorimeter test showed that the incorporation of the melamine, silica and ionic liquid significantly reduced the peak of heat release rate (pHRR) by ca. 84% compared with that of unmodified PU foam. SEM results showed that incorporated fillers can form an intumescent char layer during combustion which improves the reaction to fire of the composite foams.  相似文献   

6.
Thermoplastic elastomer compositions (TPEs) based on wollastonite-filled SEBS/PP/oil blends were prepared and characterized. The development of new TPEs with improved mechanical strength may broaden their applications, especially for soft goods. Wollastonite is a natural filler that combines high thermal stability with low health hazard in comparison to other fibrous inorganic fillers. Morphological, thermal and mechanical properties of the composite materials were studied by transmission electron microscopy (TEM), thermogravimetry (TGA), tensile tests and dynamic mechanical analysis (DMA). The results indicate that the filler was mainly distributed as nanoparticles in the PS domains, improving the mechanical resistance of the materials even at low concentration (2 phr).  相似文献   

7.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

8.
The uncontrolled aggregation of amorphous calcium phosphate (ACP) particulate fillers and their uneven distribution within polymer matrices can have adverse effects on the properties of ACP composites. In this paper we assessed the influence of non-ionic and anionic surfactants and poly(ethylene oxide) (PEO) introduced during the preparation of ACP on the particle size distribution and compositional properties of ACP. In addition, the mechanical strength of polymeric composites utilizing such fillers with a photo-activated binary methacrylate resin was evaluated. Zirconia-hybridized ACP (Zr-ACP) filler and its corresponding composite served as controls for this study. Surfactant- and PEO-ACPs had an average water content of 16.8 % by mass. Introduction of the anionic surfactant reduced the median particle diameter about 45 % (4.1 μm vs. 7.4 μm for the Zr-ACP control). In the presence of PEO, however, the d(m) increased to 14.1 μm. There was no improvement in the biaxial flexure strength (BFS) in any of the dry composite specimens prepared with the surfactant- and/or PEO-ACPs compared to those formulated with Zr-ACP. The BFS of wet composite specimens decreased by 50 % or more after a month-long exposure to saline solutions. Other types of surfactants and/or polymers as well as alternative surface modification protocols need to be explored for their potential to provide better dispersion of ACP into the matrix resin and better mechanical performance ACP composites.  相似文献   

9.
This work presents thermal studies of nanocomposites based on the flexible polyurethane (PU) matrix and filled using montmorillonite organically modified with organophosphorus flame retardant compound. Flexible PU nanocomposite foams were prepared in the reaction carried out between reactive alcoholic hydroxyl and isocyanate groups with the ratio of NCO to OH groups equal to 1.05. The amount of an organoclay ranging from 3 to 9 vol% was added to the polyol component of the resin before mixing with isocyanate. The apparent density of PU foams was ranging from 0.066 to 0.077 g cm?1. Thermal properties of the flexible PU nanocomposite foams were investigated by thermogravimetry and dynamical mechanical analysis. Glass transition temperatures (T g) were defined as maximum peak on tanδ curve. Thermal decomposition was observed at 310–320 °C (calculated from the onset of TG curve). Tensile strength of the PU foams was determined using mechanical test. The microstructure of the nanoparticles and the composites was investigated by X-ray diffraction. Finally, it was confirmed that the thermal and mechanical properties of flexible PU nanocomposite depend on the amount of nanoclay.  相似文献   

10.
Common nano clay fillers have layered structure. Some nano clays like Attapulgite (AT), Sepiolite have rod like fibrous structure. Compared to layered structured clay fibrous clay AT can undergo better dispersion in polymer matrix leading to better improvement in composite properties. Chemical modifications of AT are done through amine treatment as well as by amine+silane treatment to get chemically modified fillers AAT and SAT respectively. In the present investigation, nano composites are prepared using natural rubber (NR) filled with AT, AAT and SAT. Three different loadings of each filler are used namely 2.5, 5, and 10 phr (parts per hundred of rubber). Mechanical properties like tensile strength, elongation at break increase with the increase in filler loading up to 5 phr there after these properties marginally fall when loading is increased to 10 phr due to problem of filler dispersion at higher loading. However, modulus at 300% elongation and tear strength increases with the increase in filler loading up to 10 phr. Very similar trend can also be observed for composites with chemically modified fillers, AAT and SAT. But the degree of reinforcement is higher in the case of AAT and SAT compared to that of unmodified filler AT for the same filler loading. This difference is mainly due to better polymer-filler interaction and filler dispersion in the case of chemically modified clays AAT and SAT compared to unmodified AT. Tear strength of composites increases remarkably with the addition of AT and which is further enhanced when chemically modified clays AAT and SAT are added. Dynamic-mechanical analyses of different clay composites give idea about the difference in the degree of polymer–filler interaction due to chemical treatment of filler.  相似文献   

11.
The thermal and mechanical performance of composites with nano-sized cotton fillers embedded in low-density polyethylene (LDPE) is investigated. Microfibrillated cotton was prepared by microgrinding mechanical treatment of pulverized cotton (pCot) derived from waste T-shirts, resulting in nano-sized fibrils of the cellulose that retain high crystallinity. Film composites of LDPE with pCot before and after microgrinding were fabricated through melt extrusion and the effect of filler size on mechanical, thermal and morphological properties of the composite was investigated. Compounding microfibrillated cotton with LDPE resulted in well-dispersed nanocomposites with no discoloration after 10 min of melt extrusion at 170 °C. At concentrations up to 10 % by weight, the composites showed increased modulus, increased tensile strength and a slight decrease in elongation to break. Further improvement in the dispersion and mechanical properties of the cotton-based fillers was realized by the use of LDPE powder instead of polymer pellets fed to the extruder. This research demonstrates the processing and applicability of the use of recycled cotton-based nano-sized fillers in melt-processing.  相似文献   

12.
Thermo‐mechanically durable industrial polymer nanocomposites have great demand as structural components. In this work, highly competent filler design is processed via nano‐modified of micronic SiO2/Al2O3 particulate ceramics and studied its influence on the rheology, glass transition temperature, composite microstructure, thermal conductivity, mechanical strength, micro hardness, and tribology properties. Composites were fabricated with different proportions of nano‐modified micro‐composite fillers in epoxy matrix at as much possible filler loadings. Results revealed that nano‐modified SiO2/Al2O3 micro‐composite fillers enhanced inter‐particle network and offer benefits like homogeneous microstructures and increased thermal conductivity. Epoxy composites attained thermal conductivity of 0.8 W/mK at 46% filler loading. Mechanical strength and bulk hardness were reached to higher values on the incorporation of nano‐modified fillers. Tribology study revealed an increased specific wear rate and decreased friction coefficient in such fillers. The study is significant in a way that the design of nano‐modified mixed‐matrix micro‐composite fillers are effective where a high loading is much easier, which is critical for achieving desired thermal and mechanical properties for any engineering applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Self-assembled graphene/carbon nanotube (CNT)/polystyrene hybrid nanocomposites were prepared by water-based in situ microemulsion polymerization. The resulting nanocomposites were used as filler in a host polystyrene matrix to form composite films. An admixture of the two types of carbon fillers provided better improvement in the thermal and mechanical properties compared to the neat polymer. The sheet resistance decreased progressively due to the formation of an extended conjugation network with the CNT bridging the gap between the graphene sheets coated with polymer nanoparticles. The details of the analysis are presented.  相似文献   

14.
The uncontrolled aggregation of amorphous calcium phosphate (ACP) particulate fillers and their uneven distribution within polymer matrices can have adverse effects on the properties of ACP composites. In this article, we assessed the influence of nonionic and anionic surfactants and poly(ethylene oxide) (PEO) introduced during the preparation of ACP on the particle size distribution and compositional properties of ACP. In addition, the mechanical strength of polymeric composites utilizing such fillers with a photo‐activated binary methacrylate resin was evaluated. Zirconia‐hybridized ACP (Zr‐ACP) filler and its corresponding composite served as controls for this study. Surfactant‐ and PEO‐ACPs had an average water content of 16.8% by mass. Introduction of the anionic surfactant reduced the median particle diameter about 45% (4.1 µm versus 7.4 µm for the Zr‐ACP control). In the presence of PEO, however, the dm increased to 14.1 µm. There was no improvement in the biaxial flexure strength (BFS) in any of the dry composite specimens prepared with the surfactant and/or PEO‐ACPs compared to those formulated with Zr‐ACP. The BFS of wet composite specimens decreased by 50% or more after a month‐long exposure to saline solutions. Other types of surfactants and/or polymers as well as alternative surface modification protocols need to be explored for their potential to provide better dispersion of ACP into the matrix resin and better mechanical performance ACP composites.  相似文献   

15.
The present study investigates the individual effects of three different thermosetting waste materials, used as fillers, on the mechanical, thermal and flow properties of acetal copolymers (POM). Different amounts ranging from 5% to 30% by weight of hydrolyzed powder coating recyclates were mixed as filler material in POM. The matrix and the fillers were first dry-mixed and then compounds were prepared through melt extrusion. The resulting compounds were cooled, granulated, and then standard tensile test bars were produced through use of an injection-molding machine. We investigated the mechanical and thermal properties of test specimens, and tensile strength, bending strength and impact strength were evaluated as a function of type and amount of filler material in the POM matrix. In addition, the change in melt flow index of POM/filler mixtures was determined, before and after extrusion. Furthermore, the morphology of the specimens was examined via electron microscopy. The results of this investigation are encouraging and present an innovative approach to reutilize hydrolyzed electrostatic powder coating wastes with thermoset structures as fillers in acetal copolymers.  相似文献   

16.
A comparative analysis of the influence of various finishing agents on the properties of epoxy compounds filled with potassium polytitanates was carried out. The addition of such micro- and nanodisperse fillers is essential for preparation of composite materials with improved mechanical properties which are largely determined by the processes occurring at the binder-filler interface. The mechanisms of interaction of the finishing agents with the binder and filler were determined. The properties of the composite materials were examined in relation to the content of the finishing agent and the filler addition procedure.  相似文献   

17.
Natural ultramicronized calcium carbonate and mixtures of fumed silica‐natural ultramicronized calcium carbonate are proposed as fillers of solvent based polyurethane (PU) adhesives. PU adhesive containing only calcium carbonate shows similar rheological, thermal, mechanical, surface and adhesion properties than the PU adhesive without filler. Addition of 90 wt% fumed silica +10 wt% calcium carbonate mixture to PU adhesive produced a similar performance than the PU adhesive containing only famed silica. The increase in the amount of natural calcium carbonate in respect to fumed silica in the filler mixture produced detrimental effect on the rheological and mechanical properties of the PU adhesives (in respect to those provided by the PU adhesive only containing fumed silica), although the surface and adhesion properties were not noticeably modified.  相似文献   

18.
The meta kaolin (MK) clay particulate filler with different weight ratios viz., 0, 5, 10, 20 and 30 wt% were incorporated into castable polyurethane (PU)/polystyrene (PS) (90/10) interpenetrating polymer network (IPN). The effects of MK particulate filler loading on the mechanical and thermal properties of PU/PS (90/10) IPN composites have been studied. From the tensile behavior, it was noticed that a significant improvement in tensile strength and tensile modulus as an increase in MK filler content. Thermogravimetric analysis (TGA) data reveals the marginal improvement in thermal stability after incorporation of MK filler. TGA studies of the IPN composites have been performed in order to establish the thermal stability and their mode of thermal degradation. It was found that degradation of all composites takes place in two steps. Degradation kinetic parameters were obtained for the composites using three mathematical models. Tensile fractured composite specimens were used to analyze the morphology of the composites by scanning electron microscopic (SEM) technique.  相似文献   

19.
Poly(epsilon-caprolactone) (PCL) composite samples were prepared by polymerization and direct molding. The starting compound was epsilon-caprolactone monomer liquid combined with cellulose and inorganic fillers, using aluminium triflate as a catalyst at 80 degrees C, for 6 or 24 h. Cylinder-shaped PCL composite samples with a homogeneously dispersed cellulose filler were prepared with (-)M(n) = 4 600 ((-)M(w)/(-)M(n) = 2.9). The mechanical properties of the PCL composite samples were studied using compression test methods. The strength of a PCL composite with 50 wt.-% cellulose filler (10.8 MPa) was found to be lower than the PCL sample without fillers (19.2 MPa). The biobased content of the PCL composite with 50 wt.-% cellulose filler (51.67%) measured using accelerated mass spectrometry (AMS) was slightly higher than the carbon ratio of cellulose in the starting powder samples (41.3 mol-%). The biobased content of the polymer composite powders by AMS was found not to be affected by the presence of inorganic fillers, such as talc. The rate and extent of biodegradation, caused by Amano Lipase PS, of the PCL composite sample with cellulose filler (40% degradation in 4 d) was the same as that of a PCL sample without the cellulose filler.  相似文献   

20.
To improve the mechanical and tribological performance, two kinds of wollastonite fillers (fine or coarse) and short carbon fibers (5–15 vol %) were, respectively, incorporated into an epoxy resin. Fine wollastonite fillers remarkably enhanced the flexural modulus, strength, and toughness of the resin at some filler contents (i.e., 10 vol %) simultaneously, while coarse wollastonite fillers and short carbon fibers impaired most of mechanical properties except the modulus. The small particle size, low aspect ratio as well as the good adhesion to the epoxy matrix of the fine wollastonite particles are believed to be responsible for the improved strength and toughness. Tribological tests were performed under sliding and low amplitude oscillating wear conditions. All fillers enhanced the wear resistance and reduced the sliding coefficient of friction but to a different extent. Under sliding wear conditions, fine wollastonite particle‐filled epoxy displayed the highest wear resistance because of the formation of an effective transfer film and the low abrasiveness of the fillers. Under low amplitude oscillating wear conditions, both wollastonite fillers showed much higher wear resistance than short carbon fibers regardless of the filler content. The better adhesion between the wollastonite fillers and the epoxy matrix is responsible for the higher wear resistance under oscillating conditions. The wear tracks were inspected by microscopy to analyze the corresponding wear mechanisms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 854–863, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号