首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
In this study, fibre modification technique is performed by coating nano titanium dioxide (TiO2) particles on flax fibres. The fibre surface is treated with silane coupling agents and coated with nanoparticles at weight percentage 0.2, 0.4, 0.6 and 0.8% to develop chemical bonding at the fibre matrix interface. The improved interface is evaluated by performing Mode I, Mode II interlaminar fracture toughness (ILFT), and Dynamic mechanical analysis (DMA). The results indicate that the fibre modified composites with 0.4 wt % and 0.6 wt % coating shows 37% and 24% improvement in Mode I and Mode II ILFT values respectively. The storage modulus from the DMA analysis also exhibits improvement for the fibre modified composites. SEM analysis explains the changes in the fracture mechanism. FTIR analysis provides the details on the fibre coating by nanoparticles.  相似文献   

2.
The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites were studied. Scorch time, t2 and cure time, t90 of the composites decrease with increasing filler loading and with the presence of a silane coupling agent, Si69. Mooney viscosity also increases with increasing filler loading but at a similar filler loading shows lower value with the presence of Si69. The mechanical properties of composites viz tensile strength, tear strength, hardness and tensile modulus were also improved with the addition of Si69.  相似文献   

3.
30 wt% aligned untreated long hemp fibre/PLA (AUL) and aligned alkali treated long hemp fibre/PLA (AAL) composites were produced by film stacking and subjected to accelerated ageing. Accelerated ageing was carried out using UV irradiation and water spray at 50 °C for four different time intervals (250, 500, 750 and 1000 h). After accelerated ageing, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and mode I fracture toughness (KIc) were found to decrease and impact strength (IS) was found to increase for both AUL and AAL composites. AUL composites had greatest overall reduction in mechanical properties than that for AAL composites upon exposure to accelerated ageing environment. FTIR analysis and crystallinity contents of the accelerated aged composites support the results of the deterioration of mechanical properties upon exposure to accelerated ageing environment.  相似文献   

4.
Composites of metal-metalloid glass fibres FIB-RAFLEXTM (Fe,Cr)80(P,C,Si)20 with ordinary Portland cement (OPC) were prepared and used for an accelerated ageing procedure to study the cement paste-fibre interfaces which affect the mechanical behaviour of concrete composites. The role of the interface on the global behaviour of the concrete composite as a basis for the development of high-performance cementitious materials was studied on pulled out fibres by EDX, ESCA and by FTIR/RAMAN microspectroscopy. A Ca(OH)2 rich layer is predominant for the surface of the reinforced cementitious material and represents the interface between aggregate and matrix. The interaction between aggregate and matrix is the reason for the strength of composites with this fibre in the highly alkaline environment of hydrating cements.  相似文献   

5.
Composites of metal-metalloid glass fibres FIB-RAFLEXTM (Fe,Cr)80(P,C,Si)20 with ordinary Portland cement (OPC) were prepared and used for an accelerated ageing procedure to study the cement paste-fibre interfaces which affect the mechanical behaviour of concrete composites. The role of the interface on the global behaviour of the concrete composite as a basis for the development of high-performance cementitious materials was studied on pulled out fibres by EDX, ESCA and by FTIR/RAMAN microspectroscopy. A Ca(OH)2 rich layer is predominant for the surface of the reinforced cementitious material and represents the interface between aggregate and matrix. The interaction between aggregate and matrix is the reason for the strength of composites with this fibre in the highly alkaline environment of hydrating cements.  相似文献   

6.
The possibility of the reduction of hexafluorodisiloxane by calcium hydride in the synthesis of silane from silicon tetrafluoride has been studied. This reaction is shown to be not decisive for oxygen contamination of silane. The most likely reason for the appearance of impurity Si2OH6 in “fluoride” silane is the Ca(OH)2-catalyzed reaction of silane with trace water. The concentration of impurity Si2OH6 in silane at the stage of synthesis may be efficiently decreased by the preliminary purging of calcium hydride with a hydrogen (grade A) flow.  相似文献   

7.
Poly(butylene terephthalate) (PBT) and poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) were pyrolysed in a fixed bed reactor in the presence of calcium hydroxide (Ca(OH)2) in order to obtain benzene and naphthalene, respectively. In these experiments different ratios of polymer and Ca(OH)2 were used. Also the temperature was varied in a range between 600 °C and 800 °C. It was found that the highest yield of benzene (67%) was obtained at a temperature of 700 °C and a molar Ca(OH)2/PBT ratio of 10. The amount of carbon, fixed in the reactor residue after the experiment, was reduced from 56% for pure PBT to 38% under these conditions. Aromatic byproducts were reduced, as well, while the amount of 1,3-butadiene increased. Tetrahydrofuran was just formed under the influence of Ca(OH)2.For PEN, the optimal conditions were found at a temperature of 600 °C and a molar Ca(OH)2/PEN ratio of 5. A naphthalene yield of 80% from PEN was obtained. The rise of the naphthalene yield was caused by a more effective decomposition of the polyester by Ca(OH)2, which led to the reduction of carbon in the reactor residue after the experiment from 59% for pure PEN to 10% under optimised conditions. The part of aromatic byproducts changed just slightly.  相似文献   

8.
This study is to investigate the effect of nitrile butadiene rubber (NBR as impact modifier) together with Al2O3/YSZ (toughening) as filler loading in PMMA denture base on the thermal and mechanical properties. PMMA matrix without fillers was mixed between PMMA powder and 0.5 mass% of BPO, and it is used as the control group. The liquid components consist of 90% of methyl methacrylate (MMA) and 10% as the cross-linking agent of ethylene glycol dimethacrylate. The denture base composites were fabricated by incorporating PMMA powder and BPO and fixed at 7.5 mass% NBR particles and filler loading (1, 3, 5, 7 and 10 mass%) of Al2O3/YSZ mixture filler by (1:1 ratio) as the powder components. The ceramic fillers were treated with silane (γ-MPS) and the powder/liquid ratio (P/L) according to dental laboratory practice. The TGA data obtained show that the PMMA composites have better thermal stability compared to unreinforced PMMA, while DSC curves show slightly similar Tg values. DSC results also indicated the presence of unreacted monomer content for both reinforced and unreinforced PMMA composites. The fracture toughness, Vickers hardness and flexural modulus values were statistically increased compared to the unreinforced PMMA matrix (P?<?0.05).  相似文献   

9.
Concentrated acid hydrolysis of cellulosic material results in high dissolution yields. In this study, the neutralization step of concentrated acid hydrolysate of conifer pulp was optimized. Dry conifer pulp hydrolysis with 55?% H2SO4 at 45?°C for 2?h resulted in total sugar yields of 22.3?C26.2?g/L. The neutralization step was optimized for solid Ca(OH)2, liquid Ca(OH)2 or solid CaO, mixing time, and water supplementation. The highest hydrogen yield of 1.75?mol?H2/mol glucose was obtained with liquid Ca(OH)2, while the use of solid Ca(OH)2 or CaO inhibited hydrogen fermentation. Liquid Ca(OH)2 removed sulfate to below 30?mg SO4 2?/L. Further optimization of the neutralization conditions resulted in the yield of 2.26?mol?H2/mol glucose.  相似文献   

10.
Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface‐functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3‐(trimethoxysilyl) propyl methacrylate (γ‐MPS), which was confirmed by FT‐IR and XRF analysis. The average size of seed particles was around 70 nm, and the density of the coupling agent on the particles was calculated to be 8.9 µmol m?2. The emulsion polymerization was attempted at relatively high solid content of 40–46 wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The thermal behaviour of pineapple leaf fibre (PALF) reinforced polyethylene composites was studied by thermogravimetric and dynamic mechanical thermal analysis. Fibre treatment was carried out using isocyanate, silane and peroxide to improve the interfacial adhesion between fibre and matrix. The effects of fibre loading and surface modification on the thermal properties were evaluated. It was found that at high temperature PALF degrades before the polyethylene matrix. The storage modulus increased with increase of fibre loading and decreased with increase of temperature. The treated fibre composites impart better properties compared to untreated system. Tan δ showed a distinct peak at low temperature ascribed to the glass transition temperature of polyethylene but no peak was observed for PALF fibre. The relative damping increased with fibre loading. Cole-Cole analysis was made to understand the phase behaviour of the composite samples.  相似文献   

12.
In order to improve the properties of wood flour (WF)/poly(lactic acid) (PLA) 3D-printed composites, WF was treated with a silane coupling agent (KH550) and acetic anhydride (Ac2O), respectively. The effects of WF modification and the addition of acrylicester resin (ACR) as a toughening agent on the flowability of WF/PLA composite filament and the mechanical, thermal, dynamic mechanical thermal and water absorption properties of fused deposition modeling (FDM) 3D-printed WF/PLA specimens were investigated. The results indicated that the melt index (MI) of the specimens decreased after WF pretreatment or the addition of ACR, while the die swell ratio increased; KH550-modified WF/PLA had greater tensile strength, tensile modulus and impact strength, while Ac2O-modified WF/PLA had greater tensile modulus, flexural strength, flexural modulus and impact strength than unmodified WF/PLA; after the addition of ACR, all the strengths and moduli of WF/PLA could be improved; after WF pretreatment or the addition of ACR, the thermal decomposition temperature, storage modulus and glass transition temperature of WF/PLA were all increased, and water absorption was reduced.  相似文献   

13.
Nano-activated carbons obtained from oil palm empty fiber bunch (AC-EFB), bamboo stem (AC-BS), and coconut shells (AC-CNS) were reinforced in epoxy matrix to fabricate epoxy nanocomposites. The dynamic mechanical analysis of epoxy nanocomposites was carried out, and 5% AC-CNS treated with KOH-filled epoxy composites displayed the highest storage modulus of all the activated carbon–filled epoxy composites. The incorporation of a small amount of AC-BS, AC-EFB, and AC-CNS to the epoxy matrix enhanced the damping characteristics of the epoxy nanocomposites. The 5% AC-EFB treated with H3PO4 filled epoxy composites showed the highest glass transition temperature (Tg) in all temperature ranges.  相似文献   

14.
The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.  相似文献   

15.
A Brazilian coal power plant generates a waste composed by the fly and bottom ashes produced from coal combustion and by a spent sulfated lime generated after SO2 capture from combustion gases. This work presents a study of the early stages of the hydration of composites formed by this waste and a type II Portland cement, which will be used for CO2 capture. The cement substitution degrees in the evaluated composites were 10, 20, 30 and 40%, and the effect of the coal power unit waste on the hydration reaction was analyzed on real time by NCDTA, during the first 40 h of hydration. The results show that the higher is the substitution degree, the higher is the retarding effect on the cement hydration process. Actually, by respective thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis on initial cement mass basis, this effect is caused by double exchange reactions among Ca and Mg components of the waste, during the first 4 h of hydration, which promote a much higher exothermic effect in the NCDTA curve, simultaneously to respective induction periods. The pozzolanic reactions, due to the presence of the waste silica and alumina containing amorphous phases, consume part of the original Ca(OH)2 content existent in the waste in the case of 30 and 40% substituted pastes, and also from part of the Ca(OH)2 produced in cement hydration reactions, in the case of the 10 and 20% substituted pastes.  相似文献   

16.
A silane coupling agent, γ‐methacryloxypropyltrimethoxysilane, for the surface modification of glass fibers was varied between 0.1 and 0.8 wt %. To understand the role of interfacial adhesion of glass fiber/unsaturated polyester composites, contact angles of the silane‐treated glass fibers were measured by the wicking method on the basis of the modified Washburn equation with deionized water, diiodomethane, and ethylene glycol as testing liquids. As a result, silane‐treated glass fibers led to increased surface free energy, mainly because of their increased specific or polar component. The mechanical interfacial behaviors based on the interlaminar shear strength (ILSS) of the composites determined by short‐beam tests and the critical stress‐intensity factor (KIC) were also improved in the case of silane‐treated composites. The surface free energy and the mechanical interfacial properties especially showed the maximum value in the presence of 0.4 wt % silane coupling agent. It revealed that the increase of a specific component of the surface free energy or hydrogen bonding between the glass fibers and the coupling agents plays an important role in improving the degree of adhesion at interfaces in a composite system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 55–62, 2003  相似文献   

17.
The hybrid reinforcement effect of surface‐treated UHMWPE fiber and SiO2 on the mechanical properties of PMMA matrix composites was investigated. When UHMWPE fiber is introduced, the tensile strength of UHMWPE fiber‐reinforced composites sharply increases. The flexural modulus was enhanced with an increase in filler loading. Flexural modulus of the treated UHMWPE/SiO2/PMMA composites was higher than that of the UHMWPE/PMMA and UHMWPE/SiO2/PMMA composites. The outcome of the better interfacial bonding between the filler and the matrix is reflected in the improvement of the mechanical properties of the treated UHMWPE/SiO2/PMMA composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Interfacial regions in metal matrix composites are important in controlling the mechanical and thermal properties of these materials. An ultrahigh modulus fibre‐reinforced magnesium alloy matrix composite has been studied, with particular attention paid to the interfacial and precipitate microstructures. Fibres were surface treated but uncoated prior to composite manufacture. Observations revealed that an interface consisting of polycrystalline magnesium oxide with occasional Mg17Al12 (β) precipitate particles predominates. Discontinuous β particles formed at fibre surfaces, and continuous spherical and lamellar β precipitates nucleated at grain boundaries and fibre surfaces. High dislocation densities exist at the interface indicating matrix‐yielding subsequent to manufacture and that a high mean residual compressive stress acts on fibres. The effect that the observed microstructural features has on composite properties and on interfacial bonding is discussed and compared to examples in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Thermal analysis (DTA) was used for monitoring the proportions of Ca(OH)2 formed at the hydration of simple Portland cement (CEM I 42.5 R) samples, and cement samples with 0.5% addition of unmodified hydroxypropyl methyl cellulose (HPMC), respectively, with the addition of starch ether and polyacrylamide modified HPMC. The proportions of Ca(OH)2 formed after 1, 3, 7, and 28?days of hydration were assessed by the peak areas of the endothermic effect at the temperature range of 493?C503?°C, caused by the Ca(OH)2 decomposition. The results obtained based on thermal analysis reflect very well the correlation between the Ca(OH)2 proportions in the samples after different hydration periods and the retarding effect of the hydration processes caused by the cellulose ether's addition. This retarding effect is also evidenced by the setting times of the studied samples and the evolution of their mechanical strengths.  相似文献   

20.
Calcium phosphate coating over phosphorylated derivatives of chitin/chitosan material was produced by a process based on phosphorylation, Ca(OH)2 treatment and SBF (simulated body fluid solution) immersion. Chitin/chitosan phosphorylated using urea and H3PO4 and then soaked in saturated Ca(OH)2 solution at ambient temperature, which lead to the formation of thin coatings formed by partial hydrolysis of the PO4 functionalities, were found to stimulate the growth of a calcium phosphate coating on their surfaces after soaking in 1.5 × SBF solution for as little as one day. The Ca(OH)2 treatment facilitates the formation of a calcium phosphate precursor over the phosphorylated chitin/chitosan, which in turn encourages the growth of a calcium deficient apatite coating over the surface upon immersion in SBF solution. The bio-compatibility of calcium phosphate compound—chitin/chitosan composite materials was evaluated by cell culture test using L-929 cells. The initial anchoring ratio and the adhesive strength of L-929 cells for composites was higher than that for the polystyrene disk (LUX, control). The results of in-vitro evaluation suggested that the calcium phosphate—chitin/chitosan composite materials were suitable for cell carrier materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号