首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work is to enhance the toughness of In the current study, inherently brittle polylactic acid (PLA) has been toughened using a biobased polyester without compromising the biocompatibility, renewability, strength and thermal properties of PLA. For this purpose, biodegradable Renewable resources resource based flexible aliphatic polyester (BBPE) has been synthesized and the same has been confirmed by FTIR and 1H NMR. Melt blending of BBPE elastomer with PLA in presence of free radical initiator dicumyl peroxide (DCP) leads to the development of crosslinked PLA/BBPE (PBE) blends of tunable properties. Additionally, the mechanical, morphological, thermal, crosslink density and water absorption behaviour of PBE blends were explored. It was observed that the synthesized biobased BBPE elastomers contribute to toughening of the PLA matrix consequently, improving the its impact strength and elongation at break. of the blend  相似文献   

2.
Polylactic acid (PLA) biopolymer appears to provide environmental advantages over the petroleum-derived polymers but often ends up with limited applications owing to their poor mechanical performance and brittleness. Herein, we present a PLA polymer compatible graphene oxide (GO) based crosslinker with the intention of improving the mechanical properties. Lactic acid (LA) functionalized GO (GO-LA) crosslinker was prepared and had been crosslinked with the PLA chains through a one-step polycondensation reaction. The mechanical properties of the as-synthesized GO crosslinked PLA (GO-C-PLA) were investigated by compression tests and compared with neat PLA, and GO reinforced PLA (GO-PLA) with no crosslinking. With 0.3% of GO-LA crosslinker in GO-C-PLA, the compressive modulus increased by nine times compared to that of the neat PLA. The compressive strength also increased to 46 MPa, which was four times higher than the neat PLA. This strategy for improving the mechanical properties by introducing GO-based crosslinker can be used potentially for many polycondensation polymers and thus be useful for many high-performance applications.  相似文献   

3.
Maple fibres were treated with a variety of sequential treatments, namely sodium hydroxide (NaOH), NaOH followed by acetylation, or NaOH followed by silanation. These fibres were incorporated into a polylactic acid (PLA) composite and the biodegradation effects were investigated. After 124 days, all composites had exceeded 90% biodegradation with most close to 100%. The PLA composite with the NaOH-treated fibres had the quickest onset of degradation (4.9 days) and highest peak rate of degradation (1.77% biodegradation/day) of all composites studied. Neat PLA had a similarly high peak rate of degradation at 1.85% biodegradation/day, but had a later onset of 11 days. Gel permeation chromatography (GPC) analysis showed the earlier onset of degradation of the composites was caused by increased hydrolysis during composite fabrication as well as composting. GPC showed the formation of up to three molecular weight bands in the PLA during composting which were hypothesised to be occurring by surface hydrolysis, bulk hydrolysis and hydrolysis at the fibre interface. Analysing the remaining composite revealed the NaOH treatment not only caused an increased rate of degradation in the PLA through increase fibre porosity, but also caused an increased rate of degradation in the fibre from the lack of surface waxes and hemicellulose. Similar, yet slower, behaviours were also seen in the NaOH followed by acetylation and NaOH followed by silane treated composites with all composites degrading more rapidly than the neat PLA and neat maple fibre samples.  相似文献   

4.
Lap shear and friction force measurements were carried out on a series of monodisperse polystyrene (PS) films below the corresponding glass‐transition temperatures. It showed that adhesion between the PS/PS interface was possible at the temperature below the bulk Tg, and the lower the molecular weight of PS, the lower the temperature at which the interfacial strength was detectable. The examination of a series of molecular weights indicated both the surface molecular motion and the magnitude of the interfacial strength were dependent on molecular weight and its distribution. And a steep increase of the friction force with increasing the test temperature was observed around 0 ∼ 30 °C. The contact angle of water versus molecular weight measurements also showed a transition at room temperature. The behavior observed in this study was supposed to be due to the increased molecular mobility, and was in good agreement with the measured surface transition temperatures by DSC. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 654–658, 2000  相似文献   

5.
Hydrostatic pressure usually increases the glass transition temperature Tg of a polymer glass by decreasing its free volume; if the pressurizing environment is soluble in the polymer, however, one might expect an initial decrease in Tg with pressure as the polymer is plasticized by the environment. Just such a minimum in the Tg of polystyrene (PS) is observed as the pressure of CO2 gas is increased over the range 0.1–105 MPa from both ultrasonic (1 MHz) measurements of Young's modulus E and static measurements of the creep compliance J. A time-temperature-pressure superposition law is obeyed by PS which allows a master curve for the compliance to be constructed and shift factors to be determined. A master curve for E is then obtained by using the Boltzmann superposition principle. The compliance J reaches a maximum, and E and Tg reach minima, at a CO2 pressure of ca. 20 MPa at both 34 and 45°C, which are above the critical temperature (31°C) of CO2. At the minimum, Tg is 41 at 45°C and 36 at 34°C, the larger depression at 34°C evidently corresponding to the higher solubility of CO2 at the lower temperature. The plasticization effect due to CO2 can be isolated by subtracting the effect of hydrostatic pressure alone from the experimental data. The results leave no doubt that at high pressures CO2 gas is a severe plasticizer for polystyrene.  相似文献   

6.
The aim of this study was to investigate the water vapor adsorption behavior and mechanical properties of poly (lactic acid) (PLA)/zeolite (5, 10, or 15 phr) composites prepared with triethyl citrate (TEC; 20 phr) via a melting process. TEC was used to improve the flexibility of the PLA and the dispersibility of the zeolite in TEC-zeolite suspensions that were ultra-sonicated. It was found that zeolite was uniformly dispersed in the PLA matrix, and the interfacial adhesion between the PLA matrix and zeolite was enhanced by TEC. In addition, the tensile strengths and Young's modulus of the composites improved with increasing zeolite content. The PLA/zeolite composites prepared with TEC had increased water vapor permeability and contact angles compared to neat PLA and standard PLA/zeolite due to the presence of TEC. In particular, TEC accelerated the hydrolysis of the PLA surface in a high humidity environment, resulting in an improvement in water vapor sorption capacity. At the same zeolite content of 15 phr, the equilibrium moisture content (EMC) values of PLA/zeolite films prepared with TEC increased by up to 39.25 mg/g whereas those prepared without TEC only increased by up to 24.33 mg/g. The results suggest the possibility of applying PLA/zeolite films prepared with TEC as a flexible active packaging material.  相似文献   

7.
A one-pot two-step method based on direct melt polymerization (DMP) for the synthesis of polylactic acid (PLA) macromonomer and its further functionalized application has been developed. The first stage of the reaction is a copolycondensation of lactic acid (LA) and maleic anhydride (MAH) to obtain the macromolecule poly(lactic acid-co-maleic anhydride) (PLAM) with reactive double bonds, and the second stage is a radical copolymerization of different acrylates with PLAM to afford the modified PLA functional materials. The influences of the acrylates have been investigated. The results show that the species with substituted methyl groups in acrylate can polymerize relatively stable. On the other hand, the more carbon atoms in the ester segment of acrylate, the higher intrinsic viscosity [η] and terminal decomposition temperature for the acrylate-modified PLAMs. Among six kinds of acrylates used as the third monomer, such as acrylic acid (AA), methyl acrylate (MA), butyl acrylate (BA), methacrylic acid (MAA), methyl methacrylate (MMA), and butyl methacrylate (BMA), the BMA-modified PLAM has the biggest [η] (0.7566 dL/g) and the terminal decomposition temperature (418 °C) for there are more carbon atoms in BMA. Due to excellent reactivity of the intermediate PLAM, the final modified product can have the anticipated properties for the PLA material by the controllable regulating as different purposes. Thus, this strategy as a green and simple method provides well application prospect for PLA materials in industrial plastics, biomedicine etc.  相似文献   

8.
The glycolysis of postconsumer polyethylene terephthalate (PET) waste was evaluated with catalysts of zinc acetate, zinc stearate and zinc sulfate, showing that zinc acetate was the most soluble and effective. The chemical recycling by solvolysis of polylactic acid (PLA) and PET waste in either methanol or ethanol was investigated. Zinc acetate as a catalyst was found to be necessary to yield an effective depolymerization of waste PLA giving lactate esters, while with the same reaction conditions PET remains as an unconverted solid. This provides a strategy to selectively recycle mixed plastic waste by converting one plastic to a liquid and recovering the unreacted solid plastic by filtration.  相似文献   

9.
The processing of poly(lactic acid) (injection and extrusion/injection) as well as annealing of processed materials were studied in order to analyze the variation of its chemical structure, thermal degradation and mechanical properties. Processing of PLA was responsible for a decrease in molecular weight, as determined by GPC, due to chain scission. The degree of crystallinity was evaluated by means of differential scanning calorimetry and X-ray diffraction. It was found that mechanical processing led to the quasi disappearance of crystal structure whereas it was recovered after annealing. These findings were qualitatively corroborated by means of FTIR. By analyzing 1H NMR and 13C NMR chemical shifts and peak areas, it was possible to affirm that the chemical composition of PLA did not change after processing, but the proportion of methyl groups increased, thus indicating the presence of a different molecular environment. The thermal stability of the various materials was established by calculating various characteristic temperatures from thermograms as well as conversion and conversion derivative curves. Finally, the mechanical behaviour was determined by means of tensile testing (Young modulus, yield strength and elongation at break).  相似文献   

10.
Graphene nanoscrolls (GNS), one‐dimensional carbon‐based nanomaterials, have been predicted to possess extraordinary characteristics due to their unique open topology with scrolled graphene monolayers. In this study, the conversion of planar 2‐D graphene nanoplatelets (GNPs) to tubular and scrolled 1‐D GNSs is described. The effects of GNS as a nucleating agent to modulate the morphology, crystallization, and nano‐mechanical properties of polylactic acid (PLA) were studied. The nucleating effect of GNS and its unique topological characteristics proves to influence the crystallization of PLA. Fourier transform infrared (FTIR) spectroscopy indicated nonpreferential interactions of PLA chains around GNS due to the bulky and helical PLA macromolecular chains. Superior interfacial interactions and strain in GNS provide better load transfer between GNS and PLA matrices, resulting in higher modulus and hardness. This study is the first detailed analysis to elucidate the role of unique GNS to favorably modulate the properties of a polymer.  相似文献   

11.
The creep behavior of a series of fully cured epoxy resins with different crosslink densities was determined from the glassy compliance level to the equilibrium compliance Je at temperatures above Tg and at the glassy level below Tg during spontaneous densification at four aging temperatures, 4,4-diamino diphenyl sulfone DDS was used to crosslink the epoxy resins. The shear creep compliance curves J(t) obtained with materials at equilibrium densities near and above Tg were compared at their respective Tgs. Tgs from 101 to 205°C were observed for the epoxies which were based on the diglycidyl ether of bisphenol A. Creep rates were found to be the same at short times, and equilibrium compliances Je were close to the predictions of the kinetic theory of rubberlike elasticity. Time scale shift factors determined during physical aging were reduced to Tg. At compliances below 2 × 10?10 cm2/dyn, Andrade creep, where J(t) is a linear function of the cube root of creep time, was observed. The time to reach an equilibrium volume at Tg was found to be longer for the epoxy resin with lower crosslink densities. The increase of density during curing is illustrated for the epoxy resin with the highest crosslink density.  相似文献   

12.
To develop environmental‐friendly and flame‐retarded polymer composites, bio‐based polylactic acid (PLA) was loaded with thermally stable polyhedral octaphenyl silsesquioxane (OPS). Pure PLA and PLA/OPS composites with the OPS of 1, 3, 5, and 10 wt% were prepared by extrusion and injection molding, respectively. The scanning electron microscopy (SEM), polarized optical microscope (POM), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and thermal gravimetric analysis (TGA) were used to analyze the dispersion of the OPS in the PLA matrix and the effects of OPS on the crystallization and thermal stability properties of PLA/OPS composites, respectively. Limited oxygen index (LOI) and cone calorimeter (CONE) measurements were used to study flame retardancy of PLA and PLA/OPS composites. In order to study the flame‐retardant mechanism, the char residues were investigated by SEM, Fourier transform infrared spectra (FTIR), and X‐ray photoelectron spectroscopy (XPS). TGA‐FTIR was used to analyze the gaseous products of their thermal decomposition. The results show that the OPS particles were submicron in the PLA and could increase the crystallization rate of PLA and form small‐sized secondary α‐form crystalline compared with the pure PLA spherulite. The PLA and OPS decomposed individually in the PLA/OPS composites by TGA. According to the LOI tests, the PLA with the OPS loading exhibited very small reduction of LOI. However, the CONE tests indicated that the OPS could improve the flame retardancy of the PLA by means of low peak heat release rate and average heat release rate. It was obtained that the degree and type of the PLA crystalline for the pure PLA and PLA/OPS affect their flame retardancy. In the max thermal decomposition stage of PLA and PLA/OPS, their gaseous products were similar; at high temperatures, the PLA/OPS produced simple and clear gaseous products of PLA with solid SiO2 in the gas phase.  相似文献   

13.
[4-NH2C5H4NH][C4H3O4][C4H4O4] (abbreviated as APM) and its N,O-deuterated analogue have been synthesized. The single-crystal X-ray diffraction studies for N,O-deuterated analogue are reported. The Kurtz and Perry powder SHG technique confirms the second order nonlinear optical properties of APM. The structural phase transition of APM occurring at 312 K has been examined by infrared spectroscopy. The infrared temperature studies on the polycrystalline APM showed that the modes arising from NH⋯O and OH⋯O intermolecular hydrogen bonds vibrations appear to be very sensitive to the structural phase transition. The molecular mechanism of the phase transition is explained in terms of significant changes in the hydrogen bond configuration.  相似文献   

14.
In this article, copolymer macroinitiators prepared with styrene and iso‐octyl acrylate by reversible additional‐fragmental chain transfer polymerization were used to prepare polymer‐dispersed liquid crystals (PDLCs) with methyl acrylate. The electro‐optical properties of the PDLCs were investigated. The results showed that the glass transition temperature (Tg) of the macroinitiator has a great influence on the memory effect of the resulting PDLCs. Low driving voltage and low memory effect PDLCs could easily be obtained with copolymer macroinitiators. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Hybrid sisal fibers (HSFs) were made by mixing untreated sisal fibers with alkali-treated sisal fibers (ASFs), and the HSFs were blended with polylactic acid (PLA) matrix. Then the diatomite particles were added into the PLA/HSFs composite to make PLA/HSFs/diatomite composite. The effect of these two fillers on mechanical and thermal properties was investigated. The results showed that the reinforcing effect of HSFs was better than ASFs. Mechanical and thermal properties (especially the impact strength and crystallinity) of PLA/HSFs were higher than that of PLA/ASFs. The addition of diatomite further improved the mechanical and thermal properties of PLA composites.  相似文献   

16.
The miscibility of poly(N-isopropylacrylamide) (PNIPA) with poly(vinyl pyrrolidone) (PVP) and a cross-linked poly(acrylic acid) (Carbopol® 971P) was evaluated from the rheological data of aqueous dispersions and the temperature of glass transitions of films made of binary mixtures. PNIPA has a low critical solubility temperature (LCST) of about 33°C, below which 1% dispersion behaves as a viscous system. At temperatures above LCST, the hydrophobic interactions among the isopropyl groups initially provide transient networks of greater elasticity. The LCST of PNIPA as well as its T g (144°C, estimated by DSC and MTDSC of films) were not modified by the presence of PVP. The immiscibility of PNIPA and PVP was confirmed by the absence of interaction between both polymers as shown by FTIR analysis of the films. In contrast, PNIPA and carbopol were miscible and the behaviour of their mixtures differed significantly from that of the parent polymers; i.e. a strong synergistic effect on the viscoelasticity of the dispersions was observed below the LCST. As temperature increased, the blends showed a decrease in the loss and storage moduli, especially those with greater PNIPA proportions. The fall was smoother as the PNIPA proportion decreased. This behaviour may be explained as the result of the balance between PNIPA/carbopol hydrogen bonding interactions (as shown in the shift of C=O stretch in FTIR spectra) and PNIPA/PNIPA hydrophobic interactions. The T g values of the films of the blends showed a positive deviation from the additivity rule; the mixtures containing more than 1:1 amide:carboxylic acid groups have a notably high Tg (up to 181°C). This increase is related to the stiffness induced in the films by the PNIPA/carbopol interactions.  相似文献   

17.
In situ gel forming systems have been prepared by linking polylactic acid (PLA) to a water soluble and polyfunctional polymer, such as α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA). Three graft copolymers PHEA-PLA with a different derivatization degree in PLA, have been synthesized and characterized. PHEA-PLA graft copolymer with the highest amount in PLA has been used to prepare solutions in organic solvents able to give rise to gel-like matrices when injected into phosphate buffered saline solution. The chemical degradation of these gels has been evaluated and in vitro tests have been performed to evaluate the cell compatibility of the hydrolysis products. The possibility to use these gels for drug release has been investigated by incorporating leuprolide as a peptide model drug and by evaluating its in vitro release. To improve the drug release profile, PHEA-PLA graft copolymer has been derivatized with pendant carboxylic groups that are able to form an ion pair with the leuprolide thus reducing the burst effect and prolonging its release.  相似文献   

18.
Two novel compounds, [Cu2(pydc)2(inta)2(H2O)2]·3H2O 1 (pydc?=?2,6-pyridinedicarboxylic acid, inta?= isonicotinic acid) and [Cu(pydc)2][Cu(H2O)5]·2H2O 2, have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses and IR spectra. Compound 1 exhibits reverse saturable absorption and self-defocusing. X-ray structural analysis reveals that Compounds 1 and 2 both possess π–π stacking and hydrogen-bonding interactions forming three-dimensional (3D) networks. Crystal data for 1: a?=?7.2345(14), b?=?12.219(2), c?=?17.069(3)?Å, α?=?90.44(3), β?=?91.82(3), γ?=?93.56(3)°, Z?=?1, R1?=?0.0435, wR2?=?0.1216. Crystal data for 2: a?=?8.3708(17), b?=?27.386(6), c?=?9.6170(19)?Å, α?=?90.00, β?=?98.14(3), γ?=?90.00°, Z?=?3, R1?=?0.0742, wR2?=?0.2160.  相似文献   

19.
在硫酸介质中,以氧化铟锡(ITO)透明导电玻璃为载体,利用循环伏安法制备3-氨基苯硼酸-苯胺共聚物膜,研究了该薄膜对维生素C(AA)的光学响应.结果表明,利用电聚合方法可在ITO玻璃表面形成均匀致密的蓝色3-氨基苯硼酸-苯胺共聚物薄膜,薄膜的厚度可通过控制电位循环圈数来进行调节,薄膜使用后可用恒电位法和循环伏安法进行再生;在3%HAc介质中,在2.0~17.5mg·L-1范围内薄膜对AA浓度的变化产生灵敏的光学响应,且在480~750nm波长范围内随着波长的增加响应的灵敏度增加.  相似文献   

20.
《先进技术聚合物》2018,29(3):1123-1137
High mechanical performance and partially biodegradable PE‐composite fibers modified with polylactic acid (PLA) and recycled polyethylene terephthalate (rPET) minor components were prepared using melt extrusion and hot drawing process. Rheological properties, morphology, tensile, and thermal properties were investigated. All blends exhibited shear thinning behavior except for starting PLA and rPET. PLA and rPET dispersed phases appeared as droplets in as‐extruded strand, and PLA droplets were mostly larger than those of rPET. The fibrillation of both PLA and rPET domains was achieved after further hot drawing as the fiber. The morphology and tensile properties of the fibers mainly depended on the types and contents of dispersed phases including draw ratios. The ultimate strength of the polymer fibers at draw ratio of 20 was more than 600 times higher than that of the as‐spun sample of the same composition. Remarkable improvement in secant modulus and ultimate strength was found for PE‐30PLA, but the drawing process of this composition encountered some difficulties and rough surface of the fiber was observed. The stiffness and tensile stress for PE‐10PLA‐10rPET fiber were clearly improved when compared with PE and PE‐10PLA. A decrease in thermal stability of PE/PLA composites was observed with increasing PLA content whereas additional presence of rPET significantly increased the stability of the composites both in nitrogen and in air. PE/PLA/rPET fiber possessing high stiffness with good thermal stability prepared in this work has high potential for being utilized as structural parts for load‐bearing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号