首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the study, the conductive graphite flakes filled poly(urethane-imide) composites (PUI/GFs) with high performance were constructed by the thermal imidization self-foaming reaction. It was found that the foaming action could promote the redistribution of GFs during curing process and the formation of stable linear conductive pathways. The percolation threshold of PUI/GFs composites was lowered from 1.26 wt% (2000 mesh GFs) or 0.86 wt% (1000 mesh GFs) to 0.79 wt% (500 mesh GFs), which were relatively low percolation thresholds for polymer/GFs composites so far. When the content of 500 mesh GFs was 4.0 wt%, the electrical conductivity of the composite was as high as 3.96 × 10?1 S/m. Also, a poly(urethane-imide) (PUI) matrix with excellent thermal stability (Td10%: 334.97 °C) and mechanical properties (elongation at break: 324.52%, tensile strength: 15.88 MPa) was obtained by introducing the rigid aromatic heterocycle into the polyurethane (PU) hard segments. Moreover, the zero temperature coefficient of resistivity for the composites was observed at the temperature range from 30 °C to 200 °C. Consequently, PUI/GFs composites may provide the novel strategy for considerable conductive materials with high thermal stability in electrical conductivity.  相似文献   

2.
Multi-walled carbon nanotubes (CNTs) were non-covalently functionalized by surface wrapping of poly(sodium 4-styrenesulfonate) (PSS) with the aid of ultrasound. The functionalized CNTs were incorporated into poly(butylene succinate) (PBS) through solution coagulation to fabricate CNTs filled PBS nanocomposites. The morphologies of the PBS/CNT nanocomposites were studied by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the effect of loading of functionalized CNT on the rheological behavior, electrical conductivity and mechanical properties of the nanocomposites was investigated systemically. SEM observation indicates that functionalized CNTs dispersed in PBS matrix without obvious aggregation and showed good interfacial adhesion with the PBS phase. TEM observation reveals that a CNT network was formed when the loading of CNTs increased from 0.1 to 0.3 wt%. Rheological investigation indicates the formation of a CNT network with a percolation threshold of only 0.3 wt%. Significant improvement in electrical conductivity occurred at CNT loading of 0.3 wt%, with the value of electrical conductivity increasing by six orders of magnitude compared to neat PBS. Differential scanning calorimetry indicates that the melt crystallization temperature of PBS was improved by ∼14 °C with addition of only 0.05 wt% functionalized CNTs. Tensile tests indicate that both the yield strength and Young's modulus of PBS were apparently reinforced by incorporation of functionalized CNTs, while the elongation at break was reduced gradually.  相似文献   

3.
Alumina particles were incorporated in poly(dimethyl siloxane) (PDMS) matrix in company with multiwalled carbon nanotube (MWCNT) for improving the thermal and electrical conductivities. The concentration of MWCNT was increased from 0 to 10 wt% to PDMS at fixed amounts of alumina (200 and 300 wt% to PDMS). Thermal conductivity of PDMS composites was increased with the increasing amount of MWCNT and the excellent dispersibility of the incorporated pristine MWCNT was achieved. Thermal and electrical conductivities of the composites were increased with the increasing concentration of the alumina because the alumina particles help disperse MWCNT within the PDMS matrix due to the ball milling effect during compounding. The properties of the alumina and MWCNT incorporated PDMS composites were investigated in terms of the curing characteristics, electrical conductivity, and thermal conductivity. The MWCNT/alumina incorporated composite showed the high electrical conductivity to the level of the semiconductor.  相似文献   

4.
Polystyrene/graphene nanoplatelets (PS/GNP) and polystyrene/multi-walled carbon nanotube (PS/MWCNT) nanocomposites were prepared through solution mixing processing. The effect of carbon filler (CF) (GNP or MWCNT) doping on the DC/AC electrical conductivity, dielectric characteristics and optical parameters (absorption coefficient, α and band gap energy, Eg) of nanocomposites were investigated and compared for similar doping concentrations. The observed behavior of the DC surface conductivity for PS/CF nanocomposites was explained according to the classical percolation theory, where the percolation thresholds (ϕc) for PS/GNP and PS/MWCNT nanocomposites were determined as 12.0 vol% and 3.81 vol% and the critical exponents (t) were calculated as 2.19 and 2.13, respectively. These results indicate that CFs create three dimensional CF network in PS matrix. The dielectric relaxation properties and the AC conductivity studied by means of Broadband Dielectric Spectroscopy (BDS) measurements, showed that the presence of carbon fillers significantly enhanced the capacitive/charge storage capabilities of the nanocomposites. The optical band gap energies (Eg) of PS/GNP and PS/MWCNT nanocomposites were obtained by using Tauc method. From applicative point of view, with their enhanced dielectric and AC conductivity properties of the PS/GNP and PS/MWCNT nanocomposites have the potential to be used in energy storage and electromagnetic interference (EMI) shielding applications.  相似文献   

5.
Poly(phenylene sulfide)/ferrosoferric oxide composites (PPS/Fe3O4) with various loading levels were prepared by melt compounding. The microstructure of composites was investigated using SEM and XRD. The rheological, electrical and magnetic properties were characterized respectively by the parallel plate rheometer, high resistance meter, and magnetometer. The results reveal that the Fe3O4 particles are well dispersed in the PPS matrix due to their nice affinity, which results in a weak strain overshoot at large amplitude oscillatory level. Both the rheological and the electrical responses of the composites show a typical percolation behavior. But the rheological percolation presents lower threshold (< 40 wt %) than that of electrical percolation (~ 50 wt %), which is attributed to the difference structure of the percolation network. The magnetic response, however, shows good linear relation with Fe3O4 loadings, indicating that the physical percolation has little influence on the magnetic properties. This is mainly due to the yielded long‐range magnetic interactions among Fe3O4 particles in the applied field, which are far stronger than those nonmagnetic physical interactions accounting for percolation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 233–243, 2008  相似文献   

6.
研究了纤维状导电材料不锈钢纤维(SSF)填充高密度聚乙烯(HDPE)导电复合体系的导电渗流与流变渗流行为之间的关系,并与颗粒状导电颗粒炭黑(CB)/HDPE导电复合体系进行了比较.发现当SSF含量极低(0.3vol%)时,SSF/HDPE体系即发生导电渗流现象,且导电渗流转变区域极窄;而仅当SSF含量达到4.8vol%时,该复合体系才表现出流变渗流现象,这一结果与CB/HDPE体系及纳米级导电纤维填充体系截然不同.此外,通过正温度系数效应的研究发现SSF形成的导电通路稳定性高于CB/HDPE体系.我们认为,SSF/HDPE体系呈现的这些特点均与SSF较大的直径及长径比且其导电通路及流变渗流网络的形成机理不同有关.  相似文献   

7.
Polypropylene random copolymer nanocomposites having 0.2–7.0 vol% multi-walled carbon nanotubes (MWCNTs) were prepared via melt processing. Transmission electron microscopy (TEM) was employed to determine the nano scale dispersion of carbon nanotubes. Linear viscoelastic behavior of these nanocomposites was investigated using parallel plate rheometry. Incorporation of carbon nanotubes in the polymer matrix resulted in higher complex viscosity (η*), storage (G′) and loss modulus (G″) as compared to neat polymer, especially in the low-frequency region, suggesting a change from liquid to solid-like behavior in the nanocomposites. By plotting storage modulus vs. carbon nanotube loading and fitting with a power law function, the rheological percolation threshold in these nanocomposites was observed at a loading of ∼0.27 vol% of MWCNTs. However, electrical percolation threshold was reported at ∼0.19 vol% of MWCNTs loading. The difference in the percolation thresholds is understood in terms of nanotube connectivity with nanotubes and polymer chain required for electrical conductivity and rheological percolation.  相似文献   

8.
Carbon nanofiber (CNF) composites have the potential for creating inexpensive, semiconducting polymers. These composites require a homogeneous dispersion within the polymer. Many groups have focused on high shear methods such as twin screw extrusion. Although high shear methods produce a homogeneous dispersion, the aspect ratio of the nanofibers is reduced by the mechanical force. In this report, we present results for low shear composite formation via in situ polymerization of cyclic oligomeric carbonates. The composites were characterized by thermal gravimetric analysis, electrical conductivity, scanning electron microscopy and transmission electron microscopy. The composites exhibit minimal aggregation of the carbon nanofibers even at high weight percents. The polycarbonate/CNF composites exhibit an electrical conductivity percolation threshold of 6.3 wt% which is higher compared with similar CNF composites. The composites also show an increase in thermal stability of 40 °C as the CNF loading increases from 0 to 9 wt%.  相似文献   

9.
Carbon fillers including multi-walled carbon nanotubes (MWCNTs), carbon black (CB) and graphite were introduced in a cyanate ester (CE) resin, respectively. The effects of the fillers on the electrical and thermal conductivity of the resin were measured and analyzed based on the microscopic observations. MWCNTs, CB and graphite exhibited percolation threshold at 0.1 wt%, 0.5 wt% and 10 wt%, respectively. The maximal electrical conductivity of the composites was 1.08 S/cm, 9.94 × 10−3 S/cm and 1.70 × 10−5 S/cm. MWCNTs showed the best enhancement on the electrical conductivity. The thermal behavior of the composites was analyzed by calorimetry method. Incorporation of MWCNTs, CB and graphite increased the thermal conductivity of CE resin by 90%, 15% and 92%, respectively. Theoretical models were introduced to correlate the thermal conductivity of the CE/MWCNTs composite. The interfacial thermal resistance between CE resin and MWCNTs was 8 × 10−8 m2K/W and the straightness ratio was 0.2. The MWCNTs were seriously entangled and agglomerated. Simulation results revealed that thermal conductivity of the CE/MWCNTs composites can be substantially elevated by increasing the straightness ratio and/or filler content of MWCNTs.  相似文献   

10.
《先进技术聚合物》2018,29(1):347-354
This study investigates the effect of multiwalled carbon nanotubes (MWCNTs) content on rheological, mechanical, and EMI shielding properties in Ka band (26.5‐40 GHz) of poly (ether‐ketone) [PEK] prepared by melt compounding using twin screw extruder. Transmission electron microscopy (TEM) and field emission gun scanning electron microscopy (FEG‐SEM) studies were adopted to identify dispersion of nanotubes in PEK matrix. TEM and SEM images showed uniform dispersion of MWCNTs in PEK/MWCNT composites even at loading of 5 wt%. The rheological studies showed that the material experiences viscous (fluid) to elastic (solid) transition at 1 wt% loading beyond which nanotubes form continuous network throughout the matrix which in turn promotes reinforcement. Additionally, Van‐Gurp Palmen plot (phase angle vs complex modulus) and values of damping factor further confirm that the material undergoes viscous to elastic transition at 1 wt% loading. This reinforcement effect of nanotubes is reflected in enhanced mechanical properties (flexural strength and flexural modulus). Flexural strength and flexural modulus of PEK showed an increment of 17% upon incorporation of 5 wt% of MWCNTs. Total shielding effectiveness (SET) of −38 dB with very high shielding effectiveness due to absorption (SEA ~ −34 dB) was observed at 5 wt% loading of MWCNTs in PEK matrix in the frequency range of 26.5‐40 GHz (Ka band).  相似文献   

11.
Epoxy based polymer nano-composite was prepared by dispersing graphite nano-platelets (GNPs) using two different techniques: three-roll mill (3RM) and sonication combined with high speed shear mixing (Soni_hsm). The influence of addition of GNPs on the electrical and thermal conductivity, fracture toughness and storage modulus of the nano-composite was investigated. The GNP/epoxy prepared by 3RM technique showed a maximum electrical conductivity of 1.8 × 10−03 S/m for 1.0 wt% which is 3 orders of magnitude higher than those prepared by Soni_hsm. The percentage of increase in thermal conductivity was only 11% for 1.0 wt% and 14% for 2.0 wt% filler loading. Dynamic mechanical analysis results showed 16% increase in storage modulus for 0.5 wt%, although the Tg did not show any significant increase. Single edge notch bending (SENB) fracture toughens (KIC) measurements were carried out for different weight percentage of the filler content. The toughening effect of GNP was most significant at 1.0 wt% loading, where a 43% increase in KIC was observed. Among the two different dispersion techniques, 3RM process gives the optimum dispersion where both electrical and mechanical properties are better.  相似文献   

12.
In this work we present the preparation of conductive polyethylene/carbon nanotube composites based on the segregated network concept. Attention has been focused on the effect of decreasing the amount of filler necessary to achieve low resistivity. Using high- and low-grade single-walled carbon nanotube materials we obtained conductive composites with a low percolation threshold of 0.5 wt.% for high-grade nanotubes, about 1 wt% for commercial nanotubes and 1.5 wt% for low-grade material. The higher percolation threshold for low-grade material is related to low effectiveness of other carbon fractions in the network formation. The electrical conductivity was measured as a function of the single-walled carbon nanotubes content in the polymer matrix and as a function of temperature. It was also found that processing parameters significantly influenced the electrical conductivity of the composites. Raman spectroscopy was applied to study single wall nanotubes in the conductive composites.  相似文献   

13.
The thermal and electrical conductivity and mechanical properties of polyetherimide (PEI) containing either alkyl‐aminated (enGO) or phenyl‐aminated graphene (pnGO) oxides were studied. A solution casting method was used to prepare functionalized graphene oxide/PEI composites with different filler contents. The introduction of functionalized graphene oxide to the PEI matrix improved the thermal conductivity, electrical conductivity, and mechanical properties. The thermal conductivities of the enGO 3 wt%/PEI and pnGO 3 wt%/PEI composites were 0.324 W/mK and 0.329 W/mK, respectively, due to the high thermal conductivity of the graphene‐based materials and the strong interface adhesion due to the filler surface treatment between the fillers and the matrix. The electrical conductivities of the functionalized graphene oxide/PEI composites were larger than that of PEI, but the electrical conductivity values were generally low, which is consistent with the magnitude of the insulator. The strong interfacial adhesion between the fillers and the matrix led to improved mechanical properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Adding high loadings of nanoparticles can remarkably alter the functionality of polymer nanocomposite foams. Therefore, this dramatic change was studied at the percolation threshold as a point to predict the properties of foamed nanocomposites using the viscoelastic characteristics of un-foamed ones. In this research, the effect of incorporating 10–40 wt% of ZnO nanoparticles on rheological properties of PS/ZnO samples was investigated. Then, these samples were foamed at processing temperatures of 80 and 120 °C to study morphology and electromagnetic properties. First, the rheological study showed that the storage modulus of nanocomposites increased significantly above 20 wt% of nanoparticles. A connected network of nanoparticles altered the microstructure of nanocomposite at this rheological percolation. The morphological results show a higher cell density for foamed samples above the rheological percolation. From electromagnetic properties, the effect of ZnO connected network is obvious on the absorption enhancement for 30 and 40 wt% and only for 40 wt% of ZnO at 80 and 120 °C, respectively. Therefore, the viscoelastic properties of samples are still dominant at the lower temperature, but the foam structure became more important at the higher temperatures. This shows that the role of the filler network faded at the higher temperature and electromagnetic properties were changed with the foam structure. The microstructure expansion results in the decrease of filler amount at a fixed volume of foams, so more filler fraction is required to form a connected network of nanoparticles.  相似文献   

15.
Inclusion of conductive particles is a convenient way for the enhancement of electrical and thermal conductivities of polymers. However, improvement of the mechanical properties of such composites has remained a challenge. In this work, maleated polyethylene is proposed as a novel matrix for the production of conductive metal–thermoplastic composites with enhanced mechanical properties. The effects of two conductive particles (iron and aluminum) on the morphological, mechanical, electrical, and thermal properties of maleated polyethylene were investigated. Morphological observations revealed that the matrix had excellent adhesion with both metal particles. Increase in particle concentration was shown to improve the tensile strength and modulus of the matrix significantly with iron being slightly more effective. Through‐plane electrical conductivity of maleated polyethylene was also substantially improved after adding iron particles, while percolation was observed at particle contents of around 20–30% vol. In the case of aluminum, no percolation was observed for particle contents of up to 50% vol., which was linked to the orientation of the particles in the in‐plane direction due to the squeezing flow. Inclusion of particles led to substantial increase (over 700%) in the thermal conductivities of both composites. The addition of high concentrations of metal particles to matrix led to the creation of two groups of materials: (i) composites with high electrical and thermal conductivities and (ii) composites with low electrical and high thermal conductivities. Such characteristics of the composites are expected to provide a unique opportunity for applications where a thermally conductive/electrically insulating material is desired. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
多壁碳纳米管对聚甲醛性能的影响   总被引:2,自引:1,他引:1  
将多壁碳纳米管(MWCNTs)和聚甲醛(POM)在转矩流变仪中熔融混合得到POM/MWCNT复合材料.研究了复合材料的形态,导热性能,导电性能,流变性能和结晶性能.结果表明,MWCNTs在没有经过处理的情况下能够均匀地分散在POM基体中;当向POM中添加1.0 wt%含量MWCNTs时,复合材料的导热系数上升到0.5289 W/(K m),比纯POM的导热系数0.198 W/(K m)提高1.5倍,通过有效介质方法(EMA)验证了体系导热系数提高幅度不大的原因是MWCNTs与POM之间形成了很高的界面热阻;当MWCNTs的含量为1.0 wt%时,体系产生了导电逾渗效应,逾渗值在0.5 wt%~1.0 wt%之间;MWCNTs对POM有显著的成核作用,当向POM中添加0.5 wt%含量的MWCNTs时,POM的结晶温度提高6℃左右,但当MWCNTs的添加量进一步增加时,结晶温度几乎不再变化,成核效果呈现"饱和"状态.另外,材料的复数黏度,储能模量和损耗模量随MWCNTs含量的增加而增加.  相似文献   

17.
《European Polymer Journal》2006,42(8):1716-1727
Blends of poly(butadiene-co-acrylonitrile) elastomer [NBR] and polyaniline dodecylbenzenesulfonate [PAni.DBSA], with electrical conductivities up to 10−2 S cm−1, have been prepared by solution mixing and casting. Miscibility was maximised for NBR with high acrylonitrile (ACN) content, as predicted on the basis of simple solubility parameter calculations. Blends prepared using NBR with 48 wt% ACN had the lowest electrical conductivity percolation thresholds, and were much more conductive than previous thermally mixed blends. Optical and electron micrographs of blends prepared from NBR 48 wt% ACN also showed the lowest levels of phase separation. The FT-IR spectra of NBR-PAni.DBSA blends resembled a superposition of the spectra of the pure materials, but with significant peak shifts due to changing intermolecular interactions between the polymers. Under DSC analysis, thermal events for blends prepared with NBR 48 wt% ACN also showed the largest temperature shifts relative to those for the pure polymers, supporting the other evidence for interaction between the two polymers.  相似文献   

18.
Composites of polyvinylidene fluoride (PVDF) and multi-wall carbon nanotubes (MWNT) were prepared by a melt mixing process. Temperature dependence of electrical properties of the nanocomposites was investigated for composites containing different amounts of MWNT. An obvious positive temperature coefficient was observed. It was found that resistivity of the composites was decreased with increasing MWNT content and the electrical percolation threshold was formed at 3 wt% MWNT, which were caused by the formation of conductive chains in the composites. The mechanism of the positive temperature coefficient behavior of the nanocomposites is discussed. The rheological results showed that the materials experience a fluid–solid transition at the composition of 2 wt%, beyond which a continuous MWNT network forms throughout the matrix leading to a percolated network structure, which further indictes the nanotubes were dispersed uniformaly, in the PVDF matrix.  相似文献   

19.
Polyethylene (PE)/aluminum (Al) nanocomposites with various filler contents were prepared by a solution compounding method. We investigated the influence of the surface modification of Al nanoparticles on the microstructure and physical properties of the nanocomposites. The silane coupling agent octyl‐trimethoxysilane was shown to significantly increase interfacial compatibility between the polymer phase and Al nanoparticles. Rheological percolation threshold values were determined by analyzing the improvement in storage modulus at low frequencies depending on the Al loadings. Lower percolation threshold values were obtained for the composites prepared with the original nanoparticles than those prepared with the silane‐modified Al nanoparticles. A strong correlation between the time and concentration dependences of dc conductivity and rheological properties was observed in the different nanocomposite systems. The rheological threshold of the composites is smaller than the percolation threshold of electrical conductivity for both of the nanocomposite systems. The difference in percolation threshold is understood in terms of the smaller particle–particle distance required for electrical conduction when compared with that required to impede polymer mobility. It was directly shown by SEM characterization that the nanoparticle surface modification yielded better filler dispersion, as is consistent with our rheological and electrical analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2143–2154, 2008  相似文献   

20.
磨盘碾磨固相剪切复合技术(S3C)是制备聚合物 石墨导电复合材料的有效途径,所得聚丙烯 膨胀石墨复合材料具有纳米插层复合结构,石墨纳米片层的相互搭接可形成导电网络,具有纳米间隙的石墨插层结构可形成隧道电流,从而大幅度降低复合体系的导电逾渗阈值,在低填充量实现聚合物复合材料高电导性,与熔体共混相比,导电逾渗阈值由4 .3vol%降低到0 . 5 5vol% ,在石墨含量为4 .0 1vol%时,电导率提高10个数量级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号