首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
抗冲聚丙烯共聚物熔体结构演化的动态流变学表征   总被引:1,自引:0,他引:1  
用动态流变学方法研究了抗冲聚丙烯共聚物(IPC)熔体的流变行为.通过探讨温度、抗氧剂、氧气的存在对其熔体动态粘弹响应的影响,对IPC熔体结构的演化过程进行了描述.随温度的升高,IPC熔体的动态粘弹响应明显改变,低频率(ω)区域动态储能模量(G′)与ω的对数关系lgG′-lgω呈现平台特征;加入复合抗氧剂B215或在N2气氛下,在一定的时间范围内,IPC的特征粘弹行为完全消失,呈现均相体系的流变响应特征.低ω区域粘弹函数对IPC的结构变化存在敏感响应.通过改变温度、添加抗氧剂以及N2保护,获得了IPC熔体因降解与交联反应所引起的结构改变的信息.  相似文献   

2.
This paper presents a method for the non-destructive inspection and quantitative comparison of low-velocity impact damage in thermoplastic and thermoset composites. X-ray microscope (XRM) computed tomography is used to analyse the three-dimensional internal damage in carbon fibre/poly-ether-ether-ketone (AS4/PEEK) and carbon fibre/epoxy (CCF300/Epoxy) laminates. With the materials and testing conditions used, it was shown that thermoplastic composites have better interlaminar and intralaminar properties, and the following quantitative conclusions were drawn. Under the same impact energy, the maximum contact force of AS4/PEEK laminate was approximately twice that of CCF300/Epoxy laminate. Dissection of the reconstructed XRM volume along a characteristic slicing surface showed that AS4/PEEK had less internal damage than CCF300/epoxy. When the impact energy was 15 J, the XRM results showed that the sum of delamination areas between each ply in AS4/PEEK was only 9% of that in CCF300/Epoxy, whereas the ultrasonic C-scan results showed that the total delamination area of AS4/PEEK was 54.78% of that of CCF300/Epoxy.  相似文献   

3.
The influence of Shorea robusta natural filler loading (5, 10, 15, 20, and 25 v/v%) on the mechanical, dynamic mechanical, biodegradability, and thermal stability of the polyester composite was analyzed. The composites were fabricated using hand lay-up method. The maximum mechanical properties, storage modulus, and glass transition temperature were observed for the composite with 20 v/v% filler. The peak height of Tanδ was found to be lesser for the same. Thermal analysis results revealed that the thermal stability of composite increased with the incorporation of Shorea robusta as natural filler. Biodegradability testing showed that the addition of filler resulted in weight loss of the composite under soil burial test.  相似文献   

4.
Thermoplastics and thermoplastic elastomers compose roughly 80 percent of all polymeric materials manufactured today and play an important role in numerous sectors of modern society. While the effects of molecular weight and dispersity (Ð) on the tensile and rheological properties of these materials are well-known, only recent studies have evidenced the profound influence of the shape of the molecular weight distribution (MWD) on polymer properties. This development is largely due to the emergence of new synthetic strategies to control higher moments of the MWD. In this Perspective, we describe recent advancements by our group in understanding the effect of MWD shape on the mechanical and rheological properties of thermoplastics and thermoplastic elastomers. We highlight means to exploit MWD shape for improved processability and performance and discuss future directions in this field.  相似文献   

5.
Dynamic Mechanical Analysis (DMA) systems are measurement devices for obtaining master curves and complex modules of viscoelastic materials, such as rubbers. The conventional DMAs measurement systems in market have several limitations, which restrict their ability for operating at high frequencies. Thus, Williams, Landel and Ferry (WLF) relation is used to produce master curves and predict the material properties at high frequencies. In conventional DMAs, experiments are done in a range of temperatures, and then a master curve is made for a chosen reference temperature by shifting the measurements data to high frequencies. Therefore, the obtained results, which are not based on direct measurements, can be inaccurate. In order to overcome this problem a new simple shear high-frequency DMA (HFDMA) system is designed and built to directly measure the dynamic mechanical properties of viscoelastic material at high frequencies and the strain levels sufficient for tire manufacturers. The new HFDMA can be used to test any viscoelastic materials which have glass transmission temperature (Tg) lower than room temperature (about 23 °C) such as the Styrene-butadiene rubber (SBR). The SBR is the base material for tire tread. The designing process of this new HFDMA is presented in this paper. The rubber specimen shape is chosen by taking into account the shear elastic wave effect, bending, buckling effect and heat generation in the specimen. The repeatability test is accomplished to ensure that the results obtained from the new HFDMA are repeatable and the repeatability uncertainty is about 0.04%. The new HFDMA is validated by comparing to the direct test results of conventional DMA at 100 Hz. The direct high frequency (5 kHz) complex shear modulus and damping factor are compared with the master curve of the conventional DMA developed by the use of WLF relation for SBR. This comparison revealed that the complex shear modulus and damping factor of the SBR obtained from the HFDMA at 5 kHz and 0.05% strain amplitude are about 7% and 6.5% higher than those obtained from the conventional DMA, respectively.  相似文献   

6.
合成了一系列含有反应活性端基的改性聚乙二醇,并用其对BMC(团状模塑料)专用的高交联度不饱和聚酯进行增韧.结果表明,含有反应性马来酸酐端基的聚乙二醇参与了不饱和聚酯的固化反应,可在交联网络中构成不同长度的柔性链段,在显著提高不饱和聚酯的韧性的同时,基本保持了材料的模量及其它力学性能.用动态力学分析(DMA)对不饱和聚酯交联网络结构进行了系统研究.  相似文献   

7.
Mechanical and dynamic mechanical properties of natural rubber/recycled ethylene-propylene-diene rubber (NR/R-EPDM) blends were simultanoeusly enhanced by electron beam (EB) irradiation. The cross-linking promoter, trimethylolpropane triacrylate (TMPTA), was also introduced into the blends to induce the cross-linking. By applying EB irradiation, the tensile modulus, hardness, swelling, cross-link density, and storage modulus increased with increase in the irradiation dose; an irradiation dose of 50 kGy was efficient to gain optimum tensile strength. The formation of irradiation-induced cross-links after EB irradiation is a major concern for the enhancement of mechanical, swelling resistance, and dynamic mechanical properties of the blends.  相似文献   

8.
采用无溶剂二氧化碳固态发泡技术,在2.5、3.5、4.0和5.0 MPa饱和压力下制备了泡孔孔径为350-20μm的聚乳酸支架材料.利用热重分析技术、动态热机械分析技术和扫描电子显微镜技术,测定了材料的起始分解温度、分解速率、储存/损耗模量和损耗因子等参数,并利用Kissinger、Ozawa-Doyle和Vyazovkin方程进行了热分解动力学计算,推算了氮气环境下材料的降解时间和使用寿命.结果表明,随着发泡压力的减小,支架材料的泡孔孔径增大,材料的柔韧性增强,表观活化能降低,降解时间缩短.  相似文献   

9.
Polypropylene(PP)/ethylene-octene copolymer(POE) blends were prepared with a twin-screw extruder.Their dynamic mechanical behavior were systematically investigated.The results show that PP/POE blends are heterogeneities with a partial compatible two-phase structure,the glass transition temperature of PP phases in the blends tends to shift towards high temperature with increasing the POE content,and the glass transition temperature of POE phases shifts towards the low temperature with increasing the PP conte...  相似文献   

10.
The viscoelastic behavior of multiwall carbon nanotube (MWCNT) reinforced polyamide 66 (PA 66) was evaluated to investigate the effect of CNT content and loading frequency on dynamic moduli (i.e. storage modulus E′ and loss modulus E″) and damping factor tanδ. PA 66/CNT disk samples with five different CNT contents ranging from 3 wt % to 15 wt % were manufactured by injection molding. Testing was performed over the frequency range of 0.1–100 Hz at room temperature. Dynamic mechanical analysis results show that the mechanical properties are highly functions of tested frequency and the improvement on loss and storage modulus of nanocomposites with the addition of CNT is highly dependent on tested frequencies. The variability in loss modulus is significantly higher than the variability in the storage modulus indicating the correlation of loss modulus with uncertainties present in nanocomposite microstructure while storage modulus is essentially independent of microstructure for a given reinforcement content.  相似文献   

11.
A rule-of-mixtures approach is used with dynamic mechanical analysis (DMA) to determine the viscoelastic characteristics of individual layers of a fourth-generation advanced magnetic tape used for archival storage. Such tapes are comprised of three layers: a 0.92 µm thick poly(ester-urethane)-based front coat that binds the magnetic particles together, a 5.00 µm thick poly(ethylene naphthalate) substrate, and a protective 0.64 µm thick back coat with cellulose nitrate as a constituent. The storage modulus, loss modulus, and loss tangent determined for each layer are discussed in terms of their influence on magnetic tape properties and characteristics.  相似文献   

12.
The present study deals with the effect of molecular weight of carrier fluid on the rheological behaviour of shear thickening fluid (STF) and impact energy absorption by treated p-aramid fabrics. High molecular weight polyethylene glycols (HMW-PEG: 1000, 3000 and 6000 g mol−1) were individually added to a mixture of PEG 200 and PEG 600 to prepare ternary mixtures of carrier fluids. Increase in average molecular weight of the carrier fluid via addition of PEG 1000 and PEG 3000 enhanced the dilatant behaviour of STF. On the other hand, addition of PEG 6000 led to a rheological response inferior to that obtained via addition of PEG 3000 owing to solidification of the former at room temperature resulting in fusion of silica particles. However, an inverse relation was observed between the rheological behaviour of HMW-PEG based STFs and impact resistance of p-aramid fabrics treated with them. The diminution in impact energy absorption occurred due to lubrication effect caused by long polymer chains of HMW-PEG. On the other hand, fusion of solidified PEG 6000 and silica particles created rough microstructures over the yarn surface, which enhanced inter-yarn friction, resulting in improved impact energy absorption.  相似文献   

13.
Polypropylene + low density polyethylene (PP + LDPE) blends involving 0, 25, 50, 75 and 100 wt% of PP with dialkyl peroxide (DAP) were prepared by melt blending in a single‐screw extruder. The effects of adding dialkyl peroxide on mechanical and thermal properties of PP + LDPE blends have been studied. It was found that at lower concentrations of peroxide (e.g., 0–0.08 wt% of dialkyl peroxide) LDPE component is cross‐linked and Polypropylene (PP) is degraded in all compositions of PP + LDPE blends. Mechanical properties (Tensile strength at break, at yield and elongation at break), Melt flow index (MFI), hardness, Scanning Electron Microscope (SEM) and thermal analyses (DSC) of these blends were examined. Because of serious degradation or cross‐linking the mechanical properties and the crystallinty (%) of those products were decreased as a result of increasing peroxide content. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Dynamic mechanical analysis is a technique used to determine the viscoelastic properties of polymers and their composites. The storage modulus, loss modulus and loss factor in correlation with the glass transition temperature can be detected by several means. In this study, these properties are determined using a dynamic mechanical analyzer in 3-point bending mode, as well as a rheometer in torsion mode. The materials under consideration are a unidirectional glass fiber-reinforced epoxy, a quasi-isotropic carbon fiber-reinforced epoxy and a quasi-isotropic glass fiber-reinforced epoxy. The results of each method and material are presented and the advantages and limitations of each method are discussed. 3-point bending proved to be more suitable to detect the effect of fiber orientation for unidirectional fiber-reinforced epoxy but requires careful control of sample dimensions for accuracy. Torsion, on the other hand, gave consistent measurements for samples of varying lengths, proving to be a suitable method if materials are scarce and limited.  相似文献   

15.
聚醚链段长度对氨基聚醚-环氧树脂力学性能的影响   总被引:1,自引:0,他引:1  
以柔性端氨基聚醚(BATPE)和双酚A环氧树脂(DGEBA)为原料, 制备了无微相分离结构的无定型AB交联热固性树脂. 测试了3种不同聚乙二醇(PEG)链段长度(MPE)的BATPE-DGEBA环氧树脂固化产物的应力-应变曲线、动态力学温度谱和冲击断面形貌. 结果表明, 在环氧树脂交联网络中引入两端与DGEBA化学连接的PEG链段能避免微相分离结构的生成, 有利于提高DGEBA链段的应变松弛速率. 增加MPE, 一方面能降低环氧树脂固化产物的玻璃化转变温度和室温下的刚度和拉伸强度, 增加韧性(包括冲击强度和拉伸韧性)、断裂应变和模量损耗因子; 另一方面也能提高固化产物在低温下的储存模量. 优化MPE可制备出在中低温下同时具有优异的拉伸强度、模量、断裂应变和冲击性能的BATPE-DGEBA环氧树脂.  相似文献   

16.
Silicone‐based impact modifiers were prepared in a previous study. The modifiers were composed of silicone/acrylic rubber cores and grafted acrylic shells. They improved the toughness of poly(vinyl chloride) (PVC) and poly(methyl methacrylate). The silicone emulsion that was used to produce the silicone‐based impact modifiers was prepared via two routes: emulsion polymerization and bulk polymerization of octamethyltetracyclosiloxane. Many silicone‐based impact modifiers were produced that had different silicone/acrylic rubber characteristics. Through a toughness examination of modified PVC, the best composition of the silicone‐based impact modifiers was obtained, and the silicone content in the rubber composition was 25 wt %. The morphology of the silicone‐based impact modifiers, determined by transmission electron microscopy, was as follows: core and second shell polymers were mainly poly(butyl acrylate), and the first shell polymer was silicone. The silicone‐based impact modifiers were blended with engineering resins such as PVC, polycarbonate (PC), poly(butylene terephthalate) (PBT), and PC/PBT mixtures. The impact strength under standard conditions and after weathering test conditions for blends of the silicone‐based impact modifiers were investigated with respect to two commercially available acrylic and methyl methacrylate/butadiene/styrene impact modifiers. The results showed good weatherability and good toughness under low‐temperature conditions for the silicone‐based impact modifiers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1112–1119, 2004  相似文献   

17.
The present work aims to prepare thermal and oxidation resistant Natural Rubber (NR) composites using antioxidant-modified nanosilica (MNS). The thermo-oxidative aging performance of the composites was evaluated by the variations in mechanical properties after aging at 100 °C for 24 h. The performance was further monitored through Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, and Dynamic Mechanical Analysis. NR nanocomposite with 1–7.5 phr nanosilica (NS) and 3 phr MNS were prepared and its rheological properties were studied. A comparative study of the theoretical models yielded that modified Guth-Gold equation predicted Young's modulus better than other models. Thermal stability of natural rubber MNS composite was improved by 10 °C with pre-eminent mechanical properties like tensile strength and heat build-up. A linear relationship of compression set with modulus of all composites were also established. Equilibrium swelling test revealed improved crosslink density in NR MNS composite. The strong interaction between antioxidant and nanosilica enabled low migration of antioxidant in NR MNS composite. Hence its protective function after aging showed more effective than NR NS composites. These versatile functional properties of NR MNS composite suggest its potential application in electrical, electronic and high performance rubber products.  相似文献   

18.
Silica fume (SF) is silica-rich amorphous waste by-product obtained during zirconium silicate electrofusion process. The key objective of the study was to determine the efficiency of SF as a reinforcing filler in Natural Rubber (NR) compounds vis a vis the conventional filler, high abrasion furnace (HAF) black. Inter-particle distance and particle size distribution analysis from Transmission Electron Microscopy exhibited homogeneous dispersion of filler in hybrid composite (NR SF20/HAF30) with Bis[3-(triethoxysilyl)propyl] tetrasulfide (TESPT). NR composite with 20 phr SF loading improved modulus by 107%, tensile strength by 12%, and tear strength by 28% over gum NR. Hybrid composite showed 111% increase in modulus than NR SF20 composite. Theoretical modelling of Young's modulus with volume fraction of filler quite fit with Guth-Gold equation. Hybrid composite with TESPT showed 72% reduction in heat build-up compared to NR HAF50 composite. Thermal stability improved by 6 °C and rolling resistance reduced by 64% for hybrid TESPT composite compared to NR HAF50 composite. Constrained region in NR composites obtained from dynamic mechanical analysis showed improved rubber-filler interaction in hybrid TESPT composite. Hence, this work not only provides a new approach to utilize industrial waste but also provides for a high performance NR composite at low cost.  相似文献   

19.
1,2-Indanedione reacts with two equivalents of 2-mercaptoethanol to produce, instead of the expected 1,2-bis(1,3-oxathiolane), a dioxa-dithia[4.4.3] propellane. Other 1,2-indanediones produce analogous compounds. The protecting groups are removed at room temperature with NBS in aqueous acetone, to produce the original diketone.  相似文献   

20.
The present paper reports the results about a study of mechanical, thermal, dynamic mechanical and electrical properties of housing (weather shed) materials for outdoor polymeric insulators. Silicone rubber, ethylene-propylene-diene monomer (EPDM) and alloys of silicon-EPDM are known polymers for use as housing in high voltage insulators. The result of dynamical mechanical measurement shows that the storage modulus of blends enhances with increase EPDM in formulation. It can be seen from the result of TGA measurement that initial thermal degradation of silicone rubber improves by the effect of EPDM in blends. The blends of silicone-EPDM show good breakdown voltage strength compared to silicone rubber. Surface and volume resistance of silicone rubber improve by EPDM content. The mechanical properties of EPDM such as strength, modulus and elongation at break improve by silicone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号