首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Organic montmorillonite modified with quaternary ammonium (O‐MMT) was compounded with uncured and dynamically cured poly(vinyl chloride)/carboxylated nitrile butadiene rubber (PVC/XNBR) composites, using a Brabender Plasticorder at 130°C and 50 rpm rotor speed. The reinforcing efficiency of the O‐MMT was investigated in the uncured PVC/XNBR composite and the dynamically cured PVC/XNBR counterpart. Mixing and dynamic curing of the composites were monitored by typical torque‐time curves derived from a Brabender internal mixer. The torque‐time curves revealed that the dynamic curing process was successful and the incorporation of O‐MMT has no adverse effect on the processibility of the composites. It has been found that the introduction of crosslinks within the rubbery phase in the presence of the O‐MMT has further improved the tensile properties. DMA studies revealed that dynamically cured composite with O‐MMT showed higher storage modulus than the composite without O‐MMT. Furthermore, a one‐step tensile modulus vs. temperature curve and a related one peak tensile loss modulus vs. temperature curve were obtained, consequently, both are characteristics of a miscible polymers system. Further evidence on the composite miscibility was purchased by thermal scans from DSC, which showed a single glass transition temperature of PVC/XNBR composites. This claim was further supported by ATR‐IR spectra which revealed that hydrogen bonding is extensively involved in PVC/XNBR composites. This evidence unveiled the exact nature of the specific interactions responsible for miscibility and hence, enhanced mechanical properties. Furthermore, we proved in our studies the reinforcing role played by layered clay due to better dispersion, as well as improved interactions.  相似文献   

2.
Interpenetrating polymer networks (IPNs) based on carboxylated nitrile rubber (XNBR) and poly(methyl methacrylate)s were synthesized. Crosslinked XNBR was swollen in methyl methacrylate containing benzoyl peroxide as initiator and tetraethylene glycol dimethacrylate as crosslinking agent. The compositions of the IPNs were varied by changing the swelling time of the rubber in the methacrylate monomer. The dynamic mechanical properties of the IPNs were studied. The dynamic mechanical properties in the range 1–105 Hz were obtained by the time‐temperature superposition of the data under multifrequency mode, which indicated high tan δ with good storage modulus in the entire frequency range. This indicates the suitability of these IPNs as vibration and acoustic dampers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Hygrothermally decomposed polyester-urethane (HD-PUR) has been added as modifier (up to 20 phr) to sulfur crosslinked carboxylated nitrile rubber (XNBR). The curing and mechanical characteristics of the XNBR have been investigated as a function of the HD-PUR loading in presence and absence of carbon black (CB). The addition of HD-PUR increased the cure rate of both unfilled and CB filled XNBR but resulted in compounds of lower crosslink density and thus of lower stiffness and strength. Based on infrared spectroscopic results it was speculated that the amine functionality of HD-PUR affected the formation of the ionic clusters formed by the reaction between the -COOH groups of XNBR and ZnO. This occurred likely via a coordination complex. Evidence was also found for the formation of -CONH- linkages. Both coordination complexing and chemical reaction between -COOH and -NH2 resulted in a lower overall “crosslinking degree” and as a consequence HD-PUR acted as plasticizer in XNBR.  相似文献   

4.
A novel method is described for the preparation of nanocomposites comprising a high performance rubber for tire application and layered silicates clay. In this work nanocomposites of solution‐styrene butadiene rubber (S‐SBR) with montmorillonite layered silicate were prepared with carboxylated nitrile rubber (XNBR), a polar rubber, as a compatibilizer. A sufficient amount of organomodified layered silicate was loaded in carboxylated nitrile rubber (XNBR) and this compound was blended as a master batch in the S‐SBR. Mixed intercalated/exfoliated morphologies in the nanocomposite are evinced by X‐ray diffraction measurements and transmission electron microscopy. Dynamic mechanical analysis also supports the compatibility of the composites. A good dispersion of the layered silicate in the S‐SBR matrix was reflected from the physical properties of the nanocomposites, especially in terms of tensile strength and high elongation properties.  相似文献   

5.
Layered double hydroxides (LDHs) based elastomer nanocomposites have been synthesized and characterized in terms of nanoparticle dispersion, mechanical properties and interfacial adhesion. Since LDH has basic hydroxyl groups on its surface, its potential as reinforcing filler in elastomers and in additionally a crosslinking agent in carboxylated elastomers has been investigated in details. For this purpose, two different elastomers having widely different polarities and functional groups (e.g., ethylene propylene diene terpolymer, i.e. EPDM and carboxylated nitrile rubber, i.e. XNBR) have been used as the matrix. The pristine LDH based on Mg and Al was modified with decane sulfonate by the regeneration method. The morphological analysis of the nanocomposites (done by X-ray diffraction analysis and electron microscopy) shows that in both matrices LDH particles are dispersed in three different forms, i.e. as primary particles, as exfoliated layers and as soft clusters formed by both of them. However, their relative proportion differs drastically in the two matrices. We have shown in this study that the LDH can significantly improve the mechanical properties in both the system. In XNBR/LDH nanocomposites containing no conventional metal oxide curative, this improvement is very prominent due to secondary interaction between LDH and XNBR matrix indicating that LDH can crosslink carboxalated elastomers. It is also observed that LDH particle promotes strain-induced crystallization in XNBR/LDH. The fracture surface analysis shows that in XNBR/LDH nanocomposite very stable polymer-filler interface is formed and tensile failure takes place through the matrix rather than through the interface. In case of EPDM/LDH nanocomposites the opposite is observed and the polymer matrix hardly wets the surface of the LDH particle.  相似文献   

6.
Lignocelluloses industrial waste flour of olive husk powder (LCF) was utilized as reinforcement in carboxylated nitrile butadiene rubber (XNBR)/Polyamide-12 (PA-12) thermoplastic elastomer composites. To improve the bonding quality between the LCF and the blend, the powder was chemically treated by two means, the former is the treatment with toulene-2–4-diisocyanate (TDIC), and the latter is mercerization with sodium hydroxide followed by neutralization with acetic acid. The untreated and chemically treated powders were analyzed with attenuated total reflectance infrared spectroscopy (ATR-IR). The morphology of the powders before and after treatment was studied with scanning electron microscopy (SEM). The LCF reinforced composites were prepared using computerized Haake internal mixer coupled with rheometer. The processing conditions were 178°C and rotor speed of 80- round per minute for 7 min. The melt mixing process was monitored by the torque-time plastograms of the Haake internal mixer. The development of the stock temperature during the mixing process was monitored using the rheometer of Hakke internal mixer. The structural changes of the XNBR/PA-12 composites were inspected by SEM and attenuated ATR-IR spectroscopy. The influence of the modified filler on the toughness and hardness of the prepared samples are reported. The resistance of the prepared composites to water and toluene swelling are evaluated as well.  相似文献   

7.
Abstract

To examine the reinforcing effects of isocyanated graphene oxide (NCO-GO) on a waterborne polyurethane matrix, the surface of GO was respectively modified by isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI) and toluene diisocyanates (TDI) and then confirmed by FT-IR, Raman, TGA, XRD, TEM, AFM and SEM-EDS. The dispersity behavior between different NCO-GO and polymer was evaluated by FESEM and XRD. The nanocomposites’ chemical structure, emulsion morphology, hydrophobicity, thermal and mechanical properties were investigated by FT-IR, TEM, TGA, tensile testing machine and water contact angle test, respectively. It was shown that these properties of nanocomposites including tensile strength, initial thermal degradation and hydrophobicity were increased by the incorporation of NCO-GO, in which, particularly, the tensile stress and initial degradation temperature were respectively increased from 13.32 to 18.80?Mpa and 249 to 288?°C after the addition of TDI-GO. These superior reinforcing effects were attributed to the two-dimensional structure of NCO-GO as well as the good interfacial adhesion between the NCO-GO and WPU matrix.  相似文献   

8.
Graphene oxide (GO)/epoxy composites cured by aliphatic dibasic acids have been prepared. The influences of structure of aliphatic dibasic acid and loading of GO on curing process and mechanical properties of epoxy composites were studied. The results show that the reaction activities, gel time of corresponding epoxy-acid system and tensile strength of the formed epoxy resins decrease with the increase of the chain length of aliphatic dibasic acids. Both fracture toughness (>1.96 MPa⋅m1/2) and elongations at break (>6%) increase with the increase of the chain length of aliphatic dibasic acids. The introduction of GO is helpful to increase the mechanical properties and the gas transmission coefficient of GO/epoxy composites. A maximum of tensile strength and elongations at break were obtained when the loading of GO is 0.6 wt%. The gas transmission coefficient of GO/epoxy composite increases with the increase of GO loading. The excellent mechanical properties and gas leakage resistance coefficient of the formed epoxy composites provides potential application in many fields where conventional brittle epoxy resins are inapplicable.  相似文献   

9.
In this paper, a polyether-ether-ketone (PEEK)/epoxy composite was prepared by using PEEK microparticles as the reinforcement. The nonisothermal differential scanning calorimetry (DSC) test was used to evaluate the curing reaction of PEEK/epoxy resin system. The curing kinetics of this system were examined utilizing nonisothermal kinetic analyses (Kissinger and Ozawa), isoconversional methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose) and an autocatalytic reaction model. During these analyses, the kinetic parameters and models were obtained, the curing behavior of PEEK/epoxy resin system under dynamic conditions was predicted. The results show that isoconversional methods can adequately interpret the curing behavior of PEEK/epoxy resin system and that the theoretical DSC curves calculated by the autocatalytic reaction model are in good agreement with experimental data. Furthermore, the tensile elongation at break, tensile strength, flexural strength, compression strength and compression modulus increased by 81.6%, 33.66%, 36.53%, 10.98% and 15.14%, respectively, when PEEK microparticles were added in epoxy resin composites.  相似文献   

10.
Silylated graphite oxide (sGO) was selected as suitable filler to improve the mechanical and electrical conductive properties of poly(ε‐caprolactone) (PCL). The composites of PCL and sGO were prepared by solution blending method. By modifying the surface of GO with silylation reagent (octyltrichlorosilane), the interlayer space of graphite oxide (GO) was increased and an excellent dispersion of the modified GO in the organic solvent and into the PCL matrix was achieved. The structures and physical properties of the sGO/PCL composites were characterized by the fourier transform infrared (FTIR), thermogravimetric analysis (TGA), wide angle X‐ray diffraction (WAXD) analysis, differential scanning calorimeter (DSC), tensile tests, dynamic mechanical analysis (DMA), and volume resistivity measurements. It indicated that the PCL/sGO composites formed an exfoliated structure from the WAXD study. The tensile strength and Young′s modulus of PCL increased with the addition of sGO. It was also found that a small amount of the sGO platelets in the composite could act as a nucleating agent and accelerated the crystallization of PCL. Further, the addition of the sGO platelets into the PCL matrix increased the volume electrical conductivity of PCL. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 294–301, 2010  相似文献   

11.
戴静  郎美东 《化学学报》2012,70(11):8-15
使用简单的溶液共混的方法制备了氧化石墨烯/聚甲基丙烯酸甲酯(GO/PMMA)和表面官能化的石墨烯/聚甲基丙烯酸甲酯复合材料.通过透射电镜(TEM),扫描电镜(SEM)和原子力显微镜(AFM)观察了石墨烯及复合材料的表观形貌.通过拉伸实验表征了其力学性能,研究发现随着石墨烯的加入,其拉伸强度和断裂伸长率都有所改善,而且表面官能化的石墨烯的复合材料的改善效果要优于氧化石墨烯.  相似文献   

12.
《先进技术聚合物》2018,29(8):2381-2391
Neglecting the alteration of matrix curing characteristics in a filled rubber nanocomposite, as a result of possible interactions between the nano filler and curing agent ingredients, leads to inaccurate properties prediction using conventional hydrodynamic equations. In the current work, we present a new empirical extended version of hydrodynamic equation and examine its capability in predicting the viscoelastic properties of NBR/nanosilica system in which the negative influence of the filler on the curing process of the NBR matrix was confirmed through various analyses such as tensile test, rheometry, swelling experiments, and dynamic mechanical analysis. The results showed that the proposed empirical extended model is able to account the contribution of alteration of matrix curing characteristics in changing the composite properties below the filler percolation threshold. It was demonstrated that the extended model provides more accurate prediction of viscoelastic properties of silica‐filled cured NBR nanocomposites above glass transition temperature.  相似文献   

13.
With the purpose of improving the interfacial properties of aramid fibers reinforced rubber composites and enhancing the tensile strength of aramid fibers simultaneously, mercapto hyperbranched polysiloxane (HPSi) and functionalized graphene oxide (GO) were used to modify the surface of aramid fibers. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and other characterization methods were performed to confirm the process of synergistic modification. Judging from the results of mechanical property tests, it could be acquired that the tensile strength of modified aramid fiber was increased by 16.8%, which could be ascribed to the wrapping effect of GO sheets. The interfacial properties were assessed by the pull-out tests of composites, and the results showed that the maximum pull-out force after synergistic surface modification was increased by 99.3%, which could be mainly related to additive reaction between double bonds and mercapto groups and the promotion of surface energy. More critically, during pull-out test, aramid fiber bundles might bring a part of shear stress into the grafted GO sheets, namely, GO sheets could convert fracture energy into interfacial energy, which would improve interfacial properties dramatically.  相似文献   

14.
Novel biomimetic composite was prepared by the reaction of collagen and poly(γ‐benzyl L ‐glutamate)‐co‐poly(glutamic acid) (PBLG‐co‐PGA), which were crosslinked by non‐toxic crosslinking reagents 1‐ethyl‐(dimethylaminopropyl) carbodiimide (EDC) and N‐hydroxysuccinimide (NHS). The composite was characterized by FTIR and DSC. FTIR results confirmed that the collagen in the composite was successfully crosslinked with PBLG‐co‐PGA. DSC results showed that the composites possessed higher shrinkage temperature and higher thermal stability than the collagen. The water absorption test showed that the water absorbency of the composites increased with the increase in PBLG‐co‐PGA content in the composite. The studies of collagenase degradation and the tensile strength showed that the biostability and the tensile strength of the composites were significantly improved in comparison with that of the collagen. According to the investigations of cell adherent ratio and cell proliferation in vitro, the composite possessed good biocompatibility. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, nanohydroxyapatite/polyurethane (nHA/PU) composites with various contents of methoxy- poly(ethylene glycol) modified nHA (0 wt%, 10 wt%, 20 wt% and 30 wt%) were prepared by solution blending process. The physicochemical properties of the composite membranes were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electronic microscopy (TEM), Differential scanning calorimetry (DSC), Thermo gravimetric analysis (TGA) and tensile tests. TEM photos of the nanocomposites showed that the nHA was uniformly dispersed in the polymer matrix. The membrane with 10 wt% nHA showed the highest tensile strength which was about 75% higher than that of the pure PU membrane. However, the tensile strength decreased when high content (above 20 wt%) fillers were added, which was still higher than that of pure PU. TGA measurements suggested that the thermal stability of the membranes was improved owing to nHA fillers. XRD and DSC results illustrated that the crystallinity of PU soft segments decreased with the increasing content of nanoparticles in the composites.  相似文献   

16.
提供了三元乙丙橡胶(EPDM)交联的一种方法.以二甲苯为溶剂,溶液法制备马来酸酐(MAH)接枝EPDM,然后向溶液中加入适量碳酸钙(CaCO3),与已接枝的马来酸酐(MAH)反应.待反应完全后,滴加丙酮作为沉淀剂,沉淀物真空干燥,制得EPDM-g-MAH/CaCO3弹性体复合材料.溶解、溶胀及拉伸性能测试结果表明,复合材料样品已形成有效的交联,且材料的抗张强度、断裂伸长率和模量均得到较大幅度的提高,当CaCO3含量达到体系总重的20%时,复合材料呈现最佳力学性能.上述实验结果是因为碱性的CaCO3的Ca2+可以与接枝在EPDM上的MAH发生配合反应,进而成为EPDM的交联中心,形成有效交联,从而促进了EPDM机械性能的提高,ATR-FTIR和TGA的测试结果被用于证实上述观点.  相似文献   

17.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

18.
The properties of poly(vinyl alcohol)/graphite oxide (PVAL/GO) composites were investigated during UV irradiation using a mercury lamp (λ = 254 nm). The course of photochemical reactions was monitored by FTIR and UV-vis absorption spectroscopies as well as by estimation of insoluble gel amount formed during crosslinking. Changes in average molecular weights resulting from main chain scission in PVAL were measured by gel permeation chromatography. Composite microstructure was characterized by scanning electron microscopy and X-ray diffraction. The thermal behaviour of composites was determined by a thermogravimetric analysis. It was found that 0.1-5.0% GO addition to polymer bulk slightly hampers photooxidative degradation of PVAL. Thermal degradation in PVAL composites starts at somewhat lower temperatures in the presence of GO but this trend is changed in UV-irradiated samples.  相似文献   

19.
A series of poly(vinyl alcohol)/chitosan (PVA/CTS) hydrogel thin films were prepared via ultraviolet (UV) irradiation, with acrylic acid (AA) monomer added as a crosslinker without the addition of any other photo-initiator. The swelling behaviors, intermolecular chemical bonds, molecular structures, thermal behaviors, degrees of crystallinity, morphologies of the surfaces and internal structure, and their relationship to the AA content were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Poly(acrylic acid) (PAA) and its chemical crosslinks formed in hydrogel films via free-radical reactions were confirmed using FTIR and DSC analyses. The XRD patterns indicated that the degree of crystallinity of the hydrogel films decreased as the PAA content was increased. SEM micrographs showed that a uniform interconnected pore structure was formed through the entire hydrogel structure, and a gradient in the crosslinking density through the film thickness was observed to result from extended irradiation times. The swelling behaviors revealed that the formation of PAA and its crosslinking in the hydrogel thin films improved the pH stability and controlled the degree of swelling while retaining a high swelling rate. The successful formation of chemical crosslinking without any specific photo-initiator improves the natural characteristics of CTS and PVA and imparts the resulting PVA/CTS hydrogel thin films with properties that make them very promising in biomedical applications.  相似文献   

20.
Poly(benzoxazine-urethane)/graphene oxide [poly(Bz-PU)/GO] composites were successfully prepared by blending benzoxazine (Bz) with graphene oxide (GO) and isocyanato (NCO)-terminated polyurethane prepolymer (PU), followed by thermally activated polymerization of the blends. The network was formed via the mutual reaction and intermolecular interaction among the hydroxyl of GO, NCO groups of PU and phenolic hydroxyl of Bz. The toughness shown from SEM images and tensile properties of polybenzoxazine (PBz) plastic composites can effectively be improved by alloying with PU and GO. The onset curing temperature and exothermic peak maximums of the polymerization obtained from differential scanning calorimetry decreased resulted from the GO addition. The thermogravimetric analysis showed that the incorporation of 0.5 wt% of GO slightly improved the thermal stability of poly(Bz-PU)/GO composites. Additionally, the storage modulus improved and the glass transition temperature (Tg) increased gradually as the increasing GO content not beyond a certain amount. Finally, the exothermic peaks of the polymerization were shifted to lower temperature, and the thermal stability increased for the ternary composites as the number average molecular weights (Mn) of polyol decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号