首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution of polystyrene in styrene were dispersed in an aqueous gel phase comprising sodium lauryl sulfate, cetyl alcohol, and water using an emulsification process known to produce monomer droplet sizes inthe submicron size range (referred to as miniemulsion droplets). The shelf-life stabilities of these miniemulsions were studied to determine their relative droplet sizes, and the emulsions were concommitantly polymerized in an isothermal batch reaction calorimeter. The polymerization kinetics and final particle sizes produced were compared with miniemulsion and conventional emulsion polymerizations prepared using equivalent recipes without the addition of polystyrene. The results indicate that polymerization of miniemulsions prepared from polymer solutions produce significantly different kinetics than both miniemulsion and conventional emulsion polymerizations. In general, a small amount of polymer greatly increases the rate of polymerization and the final number of particles produced in the polymerization to the extent where even conventional polymerizations carried out above the critical micelle concentration of the surfactant polymerize more slowly. The results are explained by considering the system to be comprised of small, stable pre-formed monomer-swollen polymer particles which are able to efficiently capture aqueous phase radicals. This enables the system to produce a large final number of particles, similar to the initial number of pre-formed polymer particles, as opposed to miniemulsions and micelles in which only a relatively small fraction of the initial number of species (droplets or micelles) become polymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Growth kinetics of single mercury droplets electrochemically deposited on a platinum single crystal electrode was investigated. Potentiostatic current transients were recorded at different electrode potentials. The experimental data were interpreted on the basis of a general theoretical model accounting for joint ohmic, diffusion and charge transfer limitations. Information is obtained on two important growth parameters: the exchange current density at the mercury/solution interface boundary and the diffusion coefficient of mercury ions. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 6, pp. 756–759. The text was submitted by the authors in English.  相似文献   

3.
The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of free emulsifier for additional nucleation. In the mixed ionic/non-ionic emulsifiers, the released non-ionic emulsifier can displace the ionic emulsifier at the particle surface, which then takes part in additional nucleation. The non-stationary state polymerization can be induced by the addition of a small amount of ionic emulsifier or the incorporation of ionic groups onto the particle surface. Considering the ionic sites as no-adsorption sites, the equilibrium adsorption layer can be thought of as consisting of a uniform coverage with holes. The de-organization of the interfacial layer can be increased by interparticle interaction via extended PEO chains--a bridging flocculation mechanism. The low overall activation energy for the sterically stabilized emulsion polymerization resulted from a decreased barrier for entering radicals at high temperature and increased particle flocculation.  相似文献   

4.
侯文华  马军  颜其洁  陈懿  陈静 《化学学报》2000,58(6):683-687
采用尿素分解法制备了均分散球形Eu(OH)CO~3·H~2O超细沉淀粒子,进一步在空气中750℃下焙烧4h,得到了均分散球形氧化铕超细微粒。考察了各种反应条件的影响,获得了最佳的制备条件。用XRD,IR,TEM,TG以及比表面测定等手段对样品进行了表征。  相似文献   

5.
The versatility of colloidal particles endows the particle stabilized or Pickering emulsions with unique features and can potentially enable the fabrication of a wide variety of derived materials. We review the evolution and breakthroughs in the research on the use of colloidal particles for the stabilization of Pickering emulsions in recent years for the particle categories of inorganic particles, polymer-based particles, and food-grade particles. Moreover, based on the latest works, several emulsions stabilized by the featured particles and their derived functional materials, including enzyme immobilized emulsifiers for interfacial catalysis, 2D colloidal materials stabilized emulsions as templates for porous materials, and Pickering emulsions as adjuvant formulations, are also summarized. Finally, we point out the gaps in the current research on the applications of Pickering emulsions and suggest future directions for the design of particulate stabilizers and preparation methods for Pickering emulsions and their derived materials.  相似文献   

6.
7.
A dispersive liquid–liquid microextraction method based on the solidification of floating organic droplets was developed as a simple and sensitive method for the simultaneous determination of the concentrations of multiple fungicides (triazolone, chlorothalonil, cyprodinil, and trifloxystrobin) in water by high‐performance liquid chromatography with variable‐wavelength detection. After an approach varying one factor at a time was used, an orthogonal array design [L25 (55)] was employed to optimize the method and to determine the interactions between the parameters. The significance of the effects of the different factors was determined using analysis of variance. The results indicated that the extraction solvent volume significantly affects the efficiency of the extraction. Under optimal conditions, the relative standard deviation (n = 5) varied from 2.3 to 5.5% at 0.1 μg/mL for each analyte. Low limits of detection were obtained and ranged from 0.02 to 0.2 ng/mL. In addition, the proposed method was applied to the analysis of fungicides in real water samples. The results show that the dispersive liquid–liquid microextraction based on the solidification of floating organic droplets is a potential method for detecting fungicides in environmental water samples, with recoveries of the target analytes ranging from 70.1 to 102.5%.  相似文献   

8.
Molecular imprinting as a promising and facile separation technique has received much attention because of their high selectivity for target molecules. In this study, the superparamagnetic lysozyme surface-imprinted polymer was prepared by a novel fabricating protocol, the grafting of the imprinted polymer on magnetic particles in aqueous media was done by atom transfer radical polymerization (ATRP), and the properties of the imprinted polymer were characterized in detail. Its high selective adsorption and recognition to lysozyme demonstrated the separation ability of the magnetic imprinted material to template molecule, and it has been used for quick and direct separation of lysozyme from the mixture of standard proteins and real egg white samples under an external magnetic field. Furthermore, the elution of lysozyme from the imprinted material was achieved by PEG/sulphate aqueous two-phase system, which caused lysozyme not only desorption from the imprinted materials but also redistribution in the top and bottom phase of aqueous two-phase system. The aqueous two-phase system exhibited some of the extraction and enrichment effect to desorbed lysozyme. Our results showed that ATRP is a promising method for the protein molecularly imprinted polymer preparation.  相似文献   

9.
蛋白质-二溴羧基偶氮胂结合物的光度特性及其分析应用   总被引:1,自引:0,他引:1  
在pH 1.2~1.6 的Clark-Lubs缓冲介质中, 二溴羧基偶氮胂与蛋白质形成结合物, 该结合物的最大吸收波长为604 nm比试剂本身红移了70 nm, 表观摩尔吸光系数为2.548×105 L·mol·cm-1, 蛋白质质量浓度在10~140 mg/L服从比耳定律. 本法灵敏度较高, 选择性好, 用于人血清中总蛋白的测定, 结果与经典的考马斯亮蓝法一致.  相似文献   

10.
Three kinds of micron-sized monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/BMA=2/1, wt. ratio) were produced by two kinds of seeded polymerizations ofn-butyl methacrylate (BMA) in the presence of about 2 m-sized monodispersed PS particles, and their morphologies were examined. One was produced by a seeded dispersion polymerization where almost monomers and initiators exist in an ethanol/water (1/1, w/w) medium. The others two were produced by seeded polymerizations utilizing the dynamic swelling method, where almost monomers exist in the PS seed particles, with 2,2-azobisisobutyronitrile initiator in the monomer-swollen particles and with 2,2-azobis [2-(2-imidazolin-2-yl)propane] initiator in an ethanol/water (1/5, w/w) medium. In the former polymerization, the produced composite particles had a core-shell structure consisting of a PS-core and a PBMA-shell, whereas in the latter two polymerizations, they had a POO (Polymeric Oil-in-Oil) structure consisting of a PS-matrix and many PBMA-domains, regardless of the location of initiator in the systems. From these results, it is concluded that the location of BMA monomer in the seeded polymerization systems with micron-sized monodispersed PS seed particles greatly affects the morphologies of produced PS/PBMA composite particles.Part CLI of the series Studies on Suspension and Emulsion  相似文献   

11.
Chelating poly(vinylpyrrolidone/acrylic acid) (PVP/AAc) copolymer hydrogels were prepared by radiation-induced copolymerization. The effects of preparation parameters such as PVP content in the hydrogel and irradiation dose on the swelling behavior of the hydrogel were studied. The pH dependent swelling was investigated. The thermal stability of the prepared hydrogel and the metal chelated ones was characterized by TGA. The removal of Fe(III), Cu(II), and Mn(II) from aqueous solution by the prepared PVP/AAc chelating hydrogel was examined by batch equilibration technique. The influence of treatment time, pH, and the initial feed concentration on the amount of the metal ions removed was studied. The results show that the removal of the metal ion followed the following order: Fe(III) > Cu(II) > Mn(II). The amounts of the removed metal ions increased with treatment time and pH of the medium. To re-use the hydrogel, the metal ions were stripped by using 2 N HCl.  相似文献   

12.
Monodisperse polymer particle-based separation media were prepared by a multi-step swelling and polymerization method with two pairs of monomers and two porogenic solvents. Their chromatographic properties were compared to those of beads prepared by a corresponding suspension polymerization method without the use of seed polymer to ascertain the influence of the seed polymer on their porous structures. A large change in porous structure was observed when the swollen particle consisting of monomers and porogenic solvents contained at least one good solvent for the polystyrene seed polymer, allowing it to remain in the polymerizing medium. In contrast, when the polystyrene seed particle was excluded from the swollen oil droplets, due to its poor solubility in the monomers and the porogenic solvents, there was no difference in the chromatographic properties such as pore volume, pore size, pore size distribution, or retention selectivity between the multi-step swelling and polymerization method and the suspension polymerization method. Since the only difference between the multi-step swelling and polymerization method and the suspension method is the use of the seed polymer, it appears that a very small amount (< 1% v/v) of seed polymers in the enlarged swollen droplets plays an important role as a porogen and affects the porous structure as well as the chromatographic properties of the monodisperse polymer particle-based separation media. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
To overcome the limitation of conventional docking methods which assume fixed charge model from force field parameters, combined quantum mechanics/molecular mechanics (QM/MM) method has been applied to docking as a variable charge model and shown to exhibit improvement on the docking accuracy over fixed charge based methods. However, it has also been shown that there are a number of examples for which adoption of variable‐charge model fails to reproduce the native binding modes. In particular, for metalloproteins, previously implemented method of QM/MM docking failed most often. This class of proteins has highly polarized binding sites at which high‐coordinate‐numbered metal ions reside. We extend the QM/MM docking method so that protein atoms surrounding the binding site along with metal ions are included as quantum region, as opposed to only ligand atoms. This extension facilitates the required scaling of partial charges on metal ions leading to prediction of correct binding modes in metalloproteins. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

14.
Silica fine particles in a single or sub-micrometer regime, containing FeCl3 and 2,2-bipyridine (bpy), were prepared by utilizing reverse micellar method. Formation of tris-bpy iron(II) ([Fe(bpy)3]2+) complex was induced in the silica fine particles by UV irradiation at 365 nm. The starting micellar solution was obtained by an injection of 0.04 cm3 HCl aqueous solution into 5 cm3 tetraethyl orthosilicate (TEOS)/cyclohexane (2 cm3/3 cm3) mixed solution containing 4–14 vol% of nonionic surfactant, polyoxyethylene(5) nonylphenyl ether (NP-5). Size of the silica particles was regulated by the concentration of NP-5.  相似文献   

15.
Summary What has since become known as the normal coupled cluster method (NCCM) was invented about thirty years ago to calculate ground-state energies of closed-shell atomic nuclei. Coupled cluster (CC) techniques have since been developed to calculate excited states, energies of open-shell systems, density matrices and hence other properties, sum rules, and the sub-sum-rules that follow from imbedding linear response theory within the NCCM. Further extensions deal both with systems at nonzero temperature and with general dynamical behaviour. More recently, a new version of CC theory, the so-called extended coupled cluster method (ECCM) has been introduced. It has the potential to describe such global phenomena as phase transitions, spontaneous symmetry breaking, states of topological excitation, and nonequilibrium behaviour. CC techniques are now widely recognized as providing one of the most universally applicable, most powerful, and most accurate of all microscopicab initio methods in quantum many-body theory. The number of successful applications within physics is now impressively large. In most such cases the numerical results are either the best or among the best available. A typical case is the electron gas, where the CC results for the correlation energy agree over the entire metallic density range to within less than 1 millihartree (or <1%) with the essentially exact Green's function Monte Carlo results. The role of CC theory within modern quantum many-body theory is first surveyed, by a comparison with other techniques. Its full range of applications in physics is then reviewed. These include problems in nuclear physics, both for finite nuclei and infinite nuclear matter; the electron gas; various integrable and nonintegrable models; various relativistic quantum field theories; and quantum spin chain and lattice models. Particular applications of the ECCM include the quantum hydrodynamics of a zero-temperature, strongly-interacting condensed Bose fluid; a charged impurity in a polarizable medium (e.g., positron annihilation in metals); and various anharmonic oscillator and spin systems.  相似文献   

16.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

17.
《印度化学会志》2023,100(5):100982
Crystalline nano silica (SiO2) was synthesized using a cost-effective eco-friendly method from agricultural waste material like rice husk. Polymer nanocomposite has been prepared using the sol-gel technique from crystalline nano silica using PVA as a polymer binder. Thermal analysis measurement is employed to investigate thermal stability. The XRD analysis shows the crystalline nature of silica is revealed to have characteristic peaks of SiO2. The particle size was evaluated using Schererr's formula and found to be in the range of 21–31 nm. FTIR measurement shows the presence of O–Si–O (silane) bond formation. The PL measurement shows broad excitation prominently in the visible region. In the XRD pattern, a major peak of the Nanocomposite is observed at an angular position of 19.5° degree, which is more prominent than that of the PVA with the addition of 0.2 wt percent Nano silica to the PVA composite. SEM provides information on homogeneous distribution. This could be beneficial in terms of higher mechanical qualities as well as multifunctional properties. By hydrogen bonding, the PVA molecules are strongly linked to each SiO2 nanoparticle as measured by FTIR. The stability of materials is confirmed by Zeta Potential and DLS. In the photoluminescence property of SiO2-PVA crystalline Nano silica composite is excited using a radiation wavelength of 200 nm. The indirect bandgap was determined to be 4.28 eV which could be attributed to the 1100 °C annealing temperature. Such materials may be used as a semiconductor material obtained from a direct natural source, rice husk. Thus, in the present research structural, physical, and optical properties of crystalline nano silica and its polymer composite are explored, which leads us to prepare technological grads material from agricultural waste for varied applications including Agriculture to medical science.  相似文献   

18.
研究了一种苯并噻唑阳离子花菁与脱氧核糖核酸(DNA)作用的共振光散射光谱,在pH 6.0的六次甲基四胺-HCl缓冲介质中,痕量DNA的加入使花菁在590nm的共振光散射强度显著增强。在最佳实验条件下,增强的共振光散射强度与DNA浓度具有良好的线性关系,据此建立了一种测定DNA的共振光散射光谱法。方法的线性范围为:小牛胸腺DNA(CT DNA),0~20μg/mL,鱼精子DNA(FS DNA),0~15μg/mL;检出限分别为0.005μg/mL和0.008μg/mL。该方法已用于合成样品中DNA的测定。  相似文献   

19.
在pH 2.36~3.29 的Britton-Robinson缓冲介质中,在乳化剂OP存在条件下,虎红与蛋白质发生超分子显色反应形成红色的超分子复合物,该超分子复合物的最大吸收波长为565 nm,而试剂的最大吸收波长为568 nm,紫移了3 nm.在565 nm处考察了多种蛋白质的响应情况,结果表明测定牛血清白蛋白(BSA)、人血清白蛋白(HSA)及γ-球蛋白(IgG)时具有高灵敏度,它们的表观摩尔吸光系数ε565和桑德尔灵敏度s分别为1.836×106、 2.213×106、 2.932×106 L·mol-1·cm-1,和0.036、 0.031、 0.061 μg/cm,其线性范围分别为2~36、 2~36 和2~40 mg/L.除阴、阳离子表面活性剂外,其余大部分物质不干扰蛋白质的测定.所拟方法应用于新鲜人尿液和人血清中总蛋白的测定,结果与考马斯亮蓝G-250法基本一致.  相似文献   

20.
We propose the Hamiltonian replica‐permutation method (RPM) (or multidimensional RPM) for molecular dynamics and Monte Carlo simulations, in which parameters in the Hamiltonian are permuted among more than two replicas with the Suwa‐Todo algorithm. We apply the Coulomb RPM, which is one of realization of the Hamiltonian RPM, to an alanine dipeptide and to two amyloid‐β(29–42) molecules. The Hamiltonian RPM realizes more efficient sampling than the Hamiltonian replica‐exchange method. We illustrate the protein misfolding funnel of amyloid‐β(29–42) and reveal its dimerization pathways. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号