首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bio-based thermoplastic vulcanizate (TPV) composed of polylactide (PLA) and epoxidized natural rubber (ENR) was fabricated through dicumyl peroxide-induced dynamic vulcanization. It was found that the crosslinked ENR phase had a specific continuous structure, hence forming a bi-continuous structure in the TPV. We designed cyclic stress-strain, stress-soften and stress-relaxation tests and SEM observation to reveal the relationship between the PLA continuous phase and crosslinked ENR continuous phase. It was found that the PLA phase generated crazes to adapt the elongation of the ENR continuous phase during stretching. At the same time, the enhanced interface between PLA and ENR kept the stress transferring between the two phases. The ENR with more epoxy groups showed better compatibility with PLA, which resulted in better mechanical properties.  相似文献   

2.
Crosslink network evolution of brominated butyl rubber (BIIR)/ethylene–propylene–diene-monomer rubber (EPDM) blends during peroxide vulcanization is studied at a meso-scale level. In this work, EPDM is added as a co-agent to increase the crosslink density of BIIR vulcanization. With increasing EPDM content from 0 to 20 phr, the maximum torque of BIIR/EPDM compounds during vulcanization increases by 73%, reaching to 3.40 dNm. Vulcanization kinetic study shows that addition of EPDM favors to the crosslinking of BIIR compound. Meanwhile, the addition of 20 phr EPDM contributes to an increase in the crosslink density of BIIR/EPDM(80/20) vulcanizate, avoiding downward trend at post-cure period in comparison with BIIR only. Crosslink network evolution of BIIR/EPDM blends is divided into three periods during peroxide vulcanization at 150 °C. The role of EPDM in the crosslink network evolution is studied by proton nuclear magnetic resonance, and a “network patching” mechanism is proposed in which EPDM is implied to work as patch on damaged crosslink network resulted from the degradation nature of BIIR.  相似文献   

3.
Super-toughened poly(lactic acid) (PLA)/poly(ethylene-co-vinyl acetate) (EVA) blends were prepared via 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD) induced dynamic vulcanization and in situ interfacial compatibilization. The effects of AD on the morphology and properties of PLA/EVA blends were studied using a Brabender torque rheometer, gel content test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) thermogravimetric analysis (TGA) and mechanical properties test. The torque and gel content demonstrated that EVA and PLA was successfully vulcanized in the presence of free radicals obtained by the decomposition of the 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD). Additionally, the gel content results indicated that, compared with PLA, EVA is more aggressive with free radicals. The SEM revealed that a relatively uniform phase morphology and good interfacial compatibilization were achieved in the dynamically vulcanized PLA/EVA/AD blends. The interfacial reaction and compatibilization between the component polymers resulted in the formation of super-toughened PLA/EVA blended materials.  相似文献   

4.
Dynamic vulcanization of polylactide (PLA) with castor oil (CO) and three different diisocyanates, namely 4,4′-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI), was performed to study the effect of diisocyanate type on the vulcanization process and on the morphology as well as mechanical properties of the PLA/CO-based polyurethane blends. The reactivity of the three diisocyanate followed the order of MDI > HDI > IPDI when reacting with castor oil. Interfacial compatibilization between PLA and the CO-based polyurethane occurred when the less reactive HDI and IPDI was used. Among all the blends, PLA/CO-IPDI showed the finest morphology and the best toughening efficiency. Incorporation of 20 wt% CO-IPDI increased the elongation at break and notched impact strength of PLA by 47.3 and 6.6 times, respectively. Cavitation induced matrix plastic deformation was observed as the toughening mechanism for the PLA blends with CO-based polyurethane. The effect of CO-IPDI content on the morphology and mechanical properties of PLA was studied in detail. The particle size of dispersed CO-IPDI and the elongation at break increased gradually, the tensile strength and Young's modulus decreased gradually, while the impact strength first increased and then decreased with increasing CO-IPDI content from 5 to 30 wt%. The maximum impact strength appeared for the blends with 20 wt% CO-IPDI.  相似文献   

5.
The dynamic properties, curing characteristics and swelling behaviour of styrene butadiene rubber (SBR) and epoxidized natural rubber (ENR) blends were studied. The incorporation of ENR 50 in the blends improved processability, stiffness, resilience and reduced the damping property. In terms of curing characteristics, the scorch time, t2 and curing time, t90 of the SBR/ENR blends decrease with increasing ENR content. At room temperature (23°C) and at 100°C the swelling degree of the SBR/ENR blends decreases with increasing ENR content.  相似文献   

6.
Electrically conductive elastomer blends based on polyaniline-dodecylbenzene sulfonic acid (Pani.DBSA) and nitrile rubber (NBR) were prepared by polymerization of aniline in the presence of NBR, using a direct, one-step in situ emulsion polymerization method. At the same PAni content, the conductivity of the in situ emulsion-polymerized blends is higher than that of blends produced by mechanical mixing of both components. In addition, a morphology with the presence of PAni in the form of microtubules was achieved by the in situ process. Stronger interaction between the components were also confirmed by Rheological processing analysis (RPA). The vulcanization process decreases the conductivity of the blends prepared by both methods. The in situ polymerized blends also display higher tensile strength and also higher crosslink density  相似文献   

7.
Epoxidized natural rubber (ENR) and thermoplastic polyurethane (TPU) blends were prepared by simple blend and dynamic vulcanization. The main objective was to prepare a low‐hardness TPU material with good damping and elastic and mechanical properties. It was found that the incorporation of ENR into the blend shows a reduction in Young's modulus, hardness (i.e. <70 Shore A), damping properties (i.e. tan δ < 0.3), and tension set (i.e. <20%) compared with the pure TPU. This indicates the formation of softer TPU materials with superior damping and elastomeric properties. However, incorporation of ENR sacrificed mechanical properties in terms of tensile strength and elongation at break, but these still remain in the range of applicability for industrial uses. It was also found that dynamic vulcanization caused enhancement of mechanical properties, relaxation, damping, rheological properties, and elasticity of the blends. Temperature scanning stress relaxation measurements revealed an improvement in stress relaxation properties and thermal resistance of the dynamically cured ENR/TPU blend. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Rubber compounds based on styrene-butadiene rubber/ethylene propylene diene monomer blends of different compositions (60/40, 70/30, 80/20, 90/10, 100/0) reinforced with 1 wt%, 3 wt%, 5 wt% and 7 wt% organoclay (Cloisite 20A) were prepared on a two roll mill via a vulcanization process and characterized by several techniques. Results of X-ray diffraction showed expansion of the inter-gallery distance, and transmission electron microscopy (TEM) micrographs confirmed that the prepared nanocomposite samples have intercalated and partially exfoliated structures. Cure characteristics showed that, organoclay not only accelerates the vulcanization reaction, but also gives rise to a marked increase of the torque, indicating crosslink density of the prepared compounds increases at the presence of organoclay. Mechanical properties of samples received markedly increase by clay loading due to the good interaction established between nanoclay particles and polymer matrix as it was evidenced by SEM photomicrographs. At the same time, rheological properties showed that addition of nanoclay could improve storage modulus as well as complex viscosity of SBR/EPDM samples. The results of ozone test revealed that the ozone resistance of samples significantly increases as nanoclay or EPDM content increases.  相似文献   

9.
In this study, a dynamic vulcanized alloy of brominated poly(isobutylene‐co‐p‐methylstyrene) (BIMSM) and polyamide (PA) has been investigated. An interfacial reaction between BIMSM and PA and a crosslinking reaction between BIMSM molecules is carried out simultaneously during melt blending. To form a vulcanized, nanoscale elastomer dispersion, the timing of these reactions is key and the interfacial reaction should be well advanced before the vulcanization reaction initiates. At a blending temperature of 205 °C, independent of the processing conditions, it is found that the interfacial reaction dominates the phase morphology development. Increasing the melt processing temperature, however, begins to favor the vulcanization reaction over the interfacial reaction. In nonplasticized blends, it is found that increasing the temperature above 235 °C increases the speed of the vulcanization reaction to a level that it dominates the phase morphology development. As a result, the phase size increases by 2.5‐fold because the system is vulcanized before the interfacial modification step is complete. Adding plasticizer to the PA matrix increases the overall phase size, but shows a similar behavior with increase in temperature from 205 to 255 °C. The critical temperature where the vulcanization reaction starts dominating phase morphology in the plasticized systems is at 225 °C. Once the processing temperature is above the critical temperature, it is found that the mixing sequence can be used to time and decouple the reactions. The work demonstrates that a close control over the temperature and processing conditions can be used to decouple the interfacial and vulcanization reactions resulting in vulcanized, nanoscale dispersions for the BIMSM and PA system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Phase morphology exerts a tremendous influence on the properties of polymer blends. The development of the blend morphology depends not only on the intrinsic structure of the component polymers but also on extrinsic factors such as viscosity ratio, shearing force and temperature in the melt processing. In this study, various poly (butylene adipate-co-terephthalate) (PBAT) materials with different melt viscosity were prepared, and then poly (lactic acid) (PLA)/PBAT blends with different viscosity ratio were prepared in a counter-rotating twin-screw extruder under constant processing conditions. The influence of viscosity ratio on the morphology, mechanical, thermal and rheological properties of PLA/PBAT (70/30 w/w) blends was investigated. The experimental results showed that the morphology and properties of PLA/PBAT blends strongly depended on the viscosity ratio. Finer size PBAT phase were observed for viscosity ratio less than 1 (λ < 1) compared to samples with λ > 1. It was found that the interfacial tensions of PLA and PBAT were significantly different when the viscosity ratio was changed, the lowest interfacial tensions (0.12 mN/m) was obtained when the viscosity was 0.77. Additionally, the maximal tensile strength in PLA/PBAT blends were obtained when the viscosity ratio was 0.44, while the maximal impact properties were obtained when the viscosity ratio was 1.95.  相似文献   

11.
古菊 《高分子科学》2013,31(10):1382-1393
This work focused on the effect of nanocrystalline cellulose (NCC) on the curing characteristics, aging resistance and thermal stability of natural rubber (NR) reinforced with carbon black (CB). Sharing the same fillers loading of 45 parts per hundred rubber (phr), NR/NCC/CB composites with different NCC/CB ratios (i.e. 0/45, 5/40, 10/35, 15/30, 20/25 phr) were prepared and analyzed. Resorcinol and hexamethylene tetramine (RH), acting as the modifier in NR/NCC interface, was also discussed for its influence. The result showed that an relatively higher ratio of NCC/CB led to a lower torque, a shorter cure time (T 90), a slightly longer scorch time (T 10) and a bigger vulcanization rate constant (K). This tendency suggested that the existence of NCC accelerated the vulcanization process. Additionally, modified by RH, NR/NCC/CB compounds exhibited a short T 10 and a elevated torque. And a moderate RH content would lower the E a of vulcanization. A 10 phr substitute of CB by NCC can help to improve aging resistance in terms of mechanical properties. In a high temperature aging condition, composites with 10 phr NCC also performed the highest storage modulus (G′) among composites tested. A moderate NCC content contributed to the best retention of G′ after high temperature aging, so did the incorporation of RH. With the partial replacement of CB by NCC, the temperature of 5% weight-lose had a slight drop and the apparent crosslink density showed a decrease. Thanks to the interaction of RH with both NR and NCC, composites showed an improvement in apparent crosslink density after modified by RH.  相似文献   

12.
The vulcanization characteristics of natural rubber (NR)/ethylene-propylene-ethylidenenorbornene (EPDM) rubber blends were studied in the presence of thioacetate-(EPDMTA) or mercapto-modified EPDM (EPDMSH), using oscillating disk rheometer. The effect of both functionalized EPDMs was investigated in unaccelerated-sulfur curing system and accelerated-sulfur curing systems containing 0.4 and 0.8 phr of MBTS. Both EPDMTA and EPDMSH act as accelerator agent in the curing process, as indicated by the higher values of cure rate index and lower values of activation energy of vulcanization. A substantial increase of the crosslink density has been also observed in EPDMSH-modified blends. Both EPDMTA and EPDMSH resulted in an increase in tensile strength, but the best performance has been achieved with EPDMSH, probably because of the increase of crosslink density associated to the reactive compatibilization promoted by the reaction between mercapto groups and rubber matrix. The best ageing resistance has been observed in EPDMTA-modified blends.  相似文献   

13.
Novel thermoplastic vulcanizates based on thermoplastic polyurethane (TPU) and epoxidized natural rubber (ENR) were prepared with rice husk ash (RHA) filler. Therefore, two major renewable resource materials (i.e., ENR and RHA) were exploited. Influences of RHA loading on mechanical, morphological, thermal and dynamic properties of dynamically cured ENR/TPU blends were investigated. It was found that the RHA showed good dispersion and was mainly localized in the ENR phase. Increasing the RHA loading led to the formation of larger ENR domains dispersed in the TPU matrix. Also, migration of the RHA particles from ENR to TPU phases was observed, resulting in reduced strength properties. It was found that the RHA acted as a nucleating agent in the TPU matrix and could accelerate the crystallization of TPU. Additionally, stress relaxation of the blends was evaluated by temperature stress scanning relaxation (TSSR). Higher relaxation stresses or raised relaxation curves were observed with increased RHA loadings in the dynamically vulcanized ENR/TPU blends.  相似文献   

14.
The influence of dynamic vulcanization on the amount of the sol fraction, the crosslink density, the melt flow index, and the mechanical properties of ternary (isotactic polypropylene-rubber-crumb rubber) and binary (rubber-crumb rubber) blends was studied. Two types of ethylene-propylene-diene terpolymer (elastomer) were used as the rubber component, the oil-free elastomer and the elastomer extended with paraffin oil during its synthesis. The blends were vulcanized in the presence of a sulfur accelerating system. It was shown that blends with crumb rubber having a particle size of less than 0.1 mm exhibited the best mechanical and rheological characteristics. The introduction of crumb rubber into thermoplastic elastomers that contain the oil-free ethylene-propylene-diene terpolymer leads, at a certain ratio of the components, to a rise in the melt flow index, regardless of the crumb-rubber particle size and of whether the rubber component was vulcanized.  相似文献   

15.
Blends of natural rubber (NR) and styrene-butadiene rubber (SBR) were prepared by solution mixing and vulcanized with sulfur and accelerator in a Semi-EV system at 433 K and 443 K in order to study the vulcanization kinetic and the influence of vulcanization temperature on final structure of the blends. The vulcanization kinetic studied through the variation in rheometer curves was analyzed using the Ding and Leonov model, which takes into account the reversion effect during the cure process. The average free nanohole volume and the fractional free volume of samples with different NR/SBR ratio were estimated using positron annihilation lifetime spectroscopy (PALS). Also, the crosslink density was determined by means of swelling tests in a solvent. For all the compounds, a correlation between the free nanohole volume and the delta torque obtained from the respective rheometer curves was established.  相似文献   

16.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

17.
Melt blending was employed to prepare thermoplastic elastomer (TPE) of reclaimed rubber (RR) and high density polyethylene (HDPE). Mechanical properties of TPE samples were improved in different methods including dynamic vulcanization and reactive blending (reactive compatibilization) during melt mixing in an internal Haake mixer. The physical and mechanical properties of the TPE blends were investigated by the dynamic mechanical analysis (DMA) and tensile tests. The thermal behavior was characterized by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The phase morphology of the blends was studied by scanning electron microscopy (SEM). Experimental results showed that, both static and dynamic mechanical properties of reactively-compatibilized and dynamically-vulcanized samples improved significantly compared with the virgin samples. The effect of dynamic-vulcanization and reactivecompatibilization on the mechanical properties revealed that the Young’s modulus and storage modulus increased with both improvement methods. SEM results showed that, dynamic-vulcanization and reactivecompatibilization methods improved the distribution of RR particles in HDPE matrix. Although both methods improved the thermal and mechanical properties of the HDPE/RR blends, dynamic-vulcanization was more effective and promising approach due to the higher properties of HDPE/RR blends prepared by this method.  相似文献   

18.
线形低密度聚乙烯/废胶粉热塑弹性体动态硫化性能研究   总被引:1,自引:0,他引:1  
利用动态硫化法制备了线形低密度聚乙烯(LLDPE)/废胶粉(GTR)热塑弹性体。重点研究了两种交联剂:硫和过氧化二异丙苯(DCP)对共混物性能的影响。加入一定量的苯乙烯-丁二烯-苯乙烯(SBS)共聚物作为增容剂。结果表明,经过DCP动态硫化后的共混物的力学性能比简单共混的共混物有明显的提高,而加入硫磺体系对共混物力学性能影响不大甚至有所下降。通过红外光谱、热分析(DSC)和扫描电镜(SEM)对共混物的热行为和表面形态研究表明,加入DCP交联剂使LLDPE、SBS和胶粉之间发生了交联反应,从而增加了胶粉颗粒与LLDPE间的界面相容性,使其热塑性弹性体的力学性能得以提高。  相似文献   

19.
以丙三醇、己二酸为原料,通过熔融缩聚合成了新型聚乳酸(PLA)增韧改性剂聚己二酸丙三醇酯(PGA).利用傅立叶变换红外光谱(FT-IR),核磁共振氢谱(1H-NMR)及凝胶渗透色谱(GPC)等方法对不同反应温度条件下PGA的分子结构进行了表征.同时通过熔融共混制备了PGA/PLA共混物,并测试了共混物的冲击性能,利用差示扫描量热仪(DSC)和扫描电子显微镜(SEM)对其热性能及相形貌进行了表征.结果表明:PGA可以有效增韧聚乳酸,160℃下合成的PGA增韧性最佳,冲击强度达到48.0 J/m,较纯聚乳酸提高了3倍.PGA分子支化结构的差异对PGA/PIA的共混形态有明显的影响,从而进一步影响其增韧效果.  相似文献   

20.
Polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) blends were prepared at different compositions by melt mixing. First, the rheological properties of each individual component are briefly presented focusing on the most important aspects to be taken into account during blends preparation and investigation. The kinetics of PHBV viscosity decrease due to strong polymer degradation in the molten state was recorded. This helped making a choice of the blending parameters and of the way of performing the rheological frequency sweeps. DSC showed that components are immiscible in the whole range of compositions studied. Blends morphology was studied using high-resolution scanning electron microscope and optical microscopy in reflection mode. Nodular and co-continuous morphologies were observed depending on the composition, and minor phase size was roughly estimated. The rheology of PLA/PHBV blends was investigated in the dynamic mode and correlated with the morphology observed. The results showed an important role of the interfaces between PLA and PHBV and a peculiar behaviour of the viscosity of some mixtures at low frequencies. At medium and high frequencies mixture dynamic viscosity follows the mixing law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号