首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the effects of amorphous poly(styrene-co-acrylonitrile) (SAN) chains and hydrophilic and hydrophobic nanosilica at different loadings on the non-isothermal crystallization kinetics of PCL phase have been evaluated using different theoretical models including Avrami, modified Avrami, Ozawa and Mo equations. Using microscopic observations, the interrelations among the changes in the kinetics parameters and the morphology and phase behavior of PCL/SAN and PCL/SAN/nanosilica mixtures have been thoroughly investigated. Microscopic observations on the nanocomposites showed differences in the nanofiller dispersion and distribution state as well as preferential migration and localization state. These differences lead to contradictory trends in the effects of hydrophilic and hydrophobic nanosilica on the crystallization kinetics of pure PCL and PCL/SAN blends. The nanoparticle migration during non-isothermal DSC tests in PCL/SAN blends, the formation of nanoparticle agglomerates at higher loadings, the restrictions imposed on the molecular movements in the crystallization growth stage and slower phase separation and dissolution of PCL/SAN/silica mixtures result in the cooling rate dependence of the kinetics parameters.  相似文献   

2.
Two types of miscible poly(ε-caprolactone-co-ε-caprolactam) copolymers were studied. In both cases catalyzed hydrolytic ring-opening polymerization was employed. For the first type, the comonomers were added simultaneously to obtain random copolymers. For the second type, the comonomers were added sequentially to obtain block copolymers. Successive self-nucleation and annealing (SSA) and isothermal crystallization studies were performed to both types of copolymers. The SSA results reflect the differences in molecular microstructure: block versus random copolymers. In a wide composition range only the polycaprolactam sequences were capable of crystallization in the random copolymers. Avrami indexes of approximately 3-4 were obtained corresponding to the spherulitic crystallization of these units within the copolymers. The block copolymer samples experienced a relatively small reduction of crystallization kinetics with composition, and this was attributed to the dilution effect caused by the miscible non-crystalline polycaprolactone units. On the other hand, for the random copolymers, the rate of crystallization strongly increased with polycaprolactam content while the energy barrier for secondary nucleation decreased exponentially. The comparison between miscible block and random copolymers provides a unique opportunity to distinguish the dilution effect of the polycaprolactone units (a moderate effect) on the isothermal crystallization and melting of the polyamide phase from the molecular microstructural effect in the random copolymers case (a dramatically strong effect), where the polycaprolactam sequences are interrupted statistically by polycaprolactone sequences.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - The poly(ε-caprolactone) (PCL) was synthesized by ring-opening polymerization at 160 °C under nitrogen atmosphere for 2 h...  相似文献   

4.
The nucleation and crystallization of poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) in the PEO/PCL blends have been investigated by means of optical microscopy (OM) and differential scanning calorimetry (DSC). During the isothermal or nonisothermal crystallization process, when the adjacent PEO is in the molten state, PCL nucleation preferentially occurs at the PEO and PCL interface; after the crystallization of the adjacent PEO, much more PCL nuclei form on the surface of the PEO crystal. However, PEO crystallizes normally and no interfacial nucleation occurs in the blend. The concentration fluctuation caused by liquid–liquid phase separation (LLPS) induces the motion of PEO and PCL chains through interdiffusion and possible orientation of chain segments. The oriented PEO chain segments can assist PCL nucleation, and the heterogeneous nucleation ability of PEO increases with the orientation of PEO chains. Oriented PCL chain segments have no heterogeneous nucleation ability on PEO. It is postulated that the interfacial nucleation of PCL in the PEO/PCL blend follows the combination of “fluctuation-assisted crystallization” and “interface-assisted crystallization” mechanisms.
Figure
a Illustration of PEO and PCL segments orientation caused by interdiffusion at the interface with concentration fluctuation and PCL spherulite induced by oriented PEO chains. b Illustration of PCL spherulites induced by the surface of PEO spherulite. PEO-rich and PCL-rich domains form and grow toward the liquid–liquid coexistent compositions during LLPS. The moving PEO and PCL chains could induce some segmental alignment or orientation (relative to adjacent chains) during the reptative interdiffusion. The oriented PEO segments have the heterogeneous nucleation ability on PCL, leading to the PCL nuclei occurs at the interface of the phase domains, illustrated in a. The PEO crystal has more regular chain alignment, so PCL nucleates easier on PEO crystal surface than on oriented PEO melt surface, such as illustrated in b.  相似文献   

5.
《European Polymer Journal》1987,23(5):399-402
Castor oil and toluene-2,4-diisocyanate were reacted to form liquid prepolyurethane under various experimental conditions, varying the NCO/OH ratio. The prepolyurethanes (PPU) thus obtained were interpenetrated with methylacrylate monomer containing ethylene glycol dimethacrylate, using radical polymerization initiated by benzoyl peroxide. The PPU/MA interpenetrating polymer networks were obtained as transparent tough films by transfer moulding. They were characterized by resistance to chemical reagents, thermal behaviour and mechanical properties. The mechanothermal behaviour was studied by dynamic mechanical analysis. The morphology was examined by Scanning Electron Microscopy. Dielectric properties were studied.  相似文献   

6.
《中国化学快报》2021,32(12):3852-3856
Surface deposition based on metal-phenolic networks (MPNs) has received increasing interest in recent years. The catechol structure is generally considered to be essential to the formation of MPNs. Our most recent results have demonstrated that some kinds of monophenols can form MPNs on substrate surfaces. Herein, we report a fast and effective surface-coating system based on the coordination of 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid, a kind of monophenol, with Fe3+. Compared with other metal ions such as Cu2+ and Ni2+, Fe3+ with stronger electron acceptability can coordinate with the monophenol more strongly to form MPNs, and moreover, the deposition time significantly decreases to 40 min from generally 24 h. It is demonstrated that the deposition process is controlled by the coordination, Fe3+ hydrolysis, and deprotonation of the monophenol. The coatings endow substrates such as polypropylene microfiltration membrane with underwater superoleophobicity, which can be applied in oil/water separation with high separation efficiency and great long-term stability. In addition, the coated membranes are positively charged and thus are useful in selective adsorption of dyes. The present work not only provides a novel, fast, and one-step deposition method to fabricate MPNs, but also demonstrates that the fabrication efficiency of monophenol-based MPNs is comparable with that of polyphenol-based MPNs.  相似文献   

7.
The type of supermolecular structure and the morphology in binary polymer blends with one crystallizable component and with a miscibility gap are strongly influenced by the relative rate of crystallization and demixing. Depending on the composition of the blend and on the relative position of the crystallization curve and the miscibility gap in the phase diagram, demixing-induced crystallization as well as crystallization-induced demixing can occur. Both these approaches lead to new and interesting structures. Additionally, the interaction of the two mentioned kinds of phase transition can under circumstances affect the growth rates of adjacent spherulites. This results in anisotropic concentration distribution or phase-separation morphology around their surfaces.Dedicated to Prof. Dr. W. Pechhold on the occasion of his 60th birthday.Presented at the Frühjahrstagung des FA Polymerphysik der DPG, Bad Nauheim, FRG, April 1990.  相似文献   

8.
The nonisothermal crystallization behavior of poly(ε-caprolactone) (PCL) in the presence of varying concentrations of granular tapioca starch (GTS) was studied. Various crystallization parameters were studied by differential scanning calorimeter at four different cooling rates and these parameters were analyzed using Jeziorny, Ozawa, and Liu models. Kissinger method was used to estimate the activation energy (ΔE) of the PCL/GTS composites. The ΔE results suggested that the speed of crystallization was inhibited by GTS particles. Polarized light optical microscopy suggests formation of spherulite structure in PCL and PCL/GTS composites while no evidence of nucleation by GTS particles was observed.  相似文献   

9.
A series of copolymers with various compositions were synthesized by one-step and two-step bulk ring-opening polymerizations of L -lactide (LA) and ε-caprolactone (CL) using stannous octoate [Sn(Oct)2] and 1-hexanol as the initiating system. For the sequential two-step polymerization, a poly(ε-caprolactone) (PCL) prepolymer was polymerized first to a percent conversion of approximately 70% and LA then added in order to produce a copolymer with a chain microstructure different from that obtained from the corresponding one-step reaction. The resulting copolymers were characterized using a combination of nuclear magnetic resonance spectroscopy (1H- and 13C-NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). The average sequence lengths of the lactidyl ( ) and caproyl ( ) units, the degree of randomness (R) and the transesterification coefficient (T(II)) were calculated from the 13C-NMR spectra. The appearance of a signal due to CapLCap sequences was directly attributable to transesterification of lactidyl (LL) units. It was found that both and values from the two-step syntheses were significantly longer than from the corresponding one-step syntheses, leading to different semi-crystalline morphologies and chain microstructures. The copolymers all showed at least some blocky chain structure as a result of the significant difference in monomer reactivity (LA > CL) between LA and CL. Thermal properties including stability depended on both composition and chain microstructure which could be controlled by the method of synthesis. From their DSC curves, the two-step copolymers were seen to be semi-crystalline whereas the one-step copolymers were mainly amorphous. A more blocky microstructure, as obtained from the two-step method, appeared to result in a lower thermal stability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Poly(ε-caprolactone) (PCL) composites filled by multi-walled carbon nanotubes (MWCNTs) which was non-covalently modified by the combined surfactants of poly(sodium 4-styrenesulfonate) and cetyltrimethyl-ammonium bromide (PSS-CTAB) were fabricated via simple solution precipitation method. PCL/MWCNTs composites provided with the low procolation threshold (0.4?wt%) and high electrical conductivity due to good dispersion of MWCNTs. And the excellent mechanical properties and enhanced thermal stability were also obtained with the addition of modified MWCNTs. In addition, all PCL composites showed significantly enhanced crystallization with increasing the MWCNTs contents, which demonstrated that the MWCNT-induced crystallization of PCL could effectively regulate the properties of composites. In a word, introducing non-covalent functionalized MWCNTs in the polymer system was a promising way for developing excellent conductive composites.  相似文献   

11.
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.  相似文献   

12.
Crystallization behavior via hydrogen bonding interaction in amphiphilic block copolymer/surfactant mixtures consisting of poly(2-vinyl pyridine)-block-poly(ε-caprolactone) (P2VP-PCL) and 3-pentadecylphenol (PDP) were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The P2VP-PCL/PDP mixtures exhibit eutectic crystallization behavior; the eutectic composition is approximately at 70 wt.% PDP. Scanning probe microscopy (SPM) observation revealed the microphase structure in the P2VP-PCL/PDP mixtures and the unique eutectic morphology at the eutectic composition, which was further confirmed by small angle X-ray scattering (SAXS) results. To our knowledge, this is the first example of eutectic crystallization observed in amphiphilic block copolymer/surfactant systems. The FTIR study proved that there are competitive hydrogen bonding interactions between P2VP block/PDP and PCL block/PDP pairs in the P2VP-PCL/PDP mixtures. On the basis of the SPM results and FTIR study, a model describing the microstructure of the P2VP-PCL/PDP eutectic mixtures is proposed. The amorphous P2VP blocks are expelled from the ordered eutectic lamellae formed by the crystalline PCL blocks and PDP, which deviates remarkably from the existing structural model proposed by other authors for poly(vinyl pyridine)/PDP and poly(styrene-block-4-vinyl pyridine)/PDP mixtures.  相似文献   

13.
The morphology and thermal stability of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blend nanocomposites with small amounts of TiO2 nanoparticles were investigated. The nanoparticles were mostly located in the PLA phase, with good dispersion of individual particles, although significant aggregation was also visible. The thermal stability and degradation behaviour of the different samples were studied using thermogravimetric analysis (TGA) and TGA-Fourier-transform infrared (FTIR) spectroscopy. Neat PCL showed better thermal stability than PLA, but the degradation kinetics revealed that PLA had a higher activation energy of degradation than PCL, indicating its degradation rate more strongly depends on temperature, probably because of a more complex degradation mechanism based on chain scission and re-formation. Blending of PLA and PCL reduced the thermal stabilities of both polymers, but the presence of TiO2 nanoparticles improved their thermal stability. The nanoparticles also influenced the volatilization of the degradation products from the blend, acted as degradation catalyst and/or retarded the escape of volatile degradation products.  相似文献   

14.
Acrylonitrile-styrene-acrylate terpolymer and poly(α-methylstyrene-acrylonitrile) (ASA/α-MSAN, 25/75) with different loadings of chlorosulfonated polyethylene (CSM) were prepared via melt blending, with goals of toughening modification of ASA/α-MSAN blends and maintaining the heat resistance simultaneously. The results revealed CSM had excellent toughening effect at room temperature. At 0 °C, impact strength increased linearly with CSM content. However, toughening effect of CSM was undesirable at −30 °C. The temperature-dependent toughening efficiency of CSM was significantly related to its glass transition behavior. Scanning electron microscope analysis on cryo-fractured surfaces revealed the toughening mechanism was the formation of CSM toughening network in matrix, which was further confirmed by selective extraction tests. The formation of CSM network could lead to increased glass transition temperature of the blends at the low temperature region according to dynamic mechanical thermal analysis. Different from other toughening agents, CSM network uncompromised the heat resistance of ASA/α-MSAN blends.  相似文献   

15.
Block copolymers have been extensively used in the synthesis of many types of nanoparticles, where generally are considered as stabilizer and protective agent. In this work a double function of the biodegradable triblock copolymer poly(N-vinyl-2-pyrrolidone)-b-poly(ε-caprolactone)-b-poly(N-vinyl-2-pyrrolidone), (PVP-PCL-PVP) in the gold nanoparticle-copolymer synthesis is reported.Gold-copolymer composed nanoparticles were synthesized using the triblock copolymer (PVP-PCL-PVP) and potassium tetrachloro aurate (III), both in aqueous solution. The copolymer work as both, reductant and stabilizer agent. The obtained nanoparticles were characterized by FT-IR, dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The shape and the size of the obtained nanoparticles are dependent on the copolymer/salt of gold concentration ratio used in the synthesis.To complement the experimental results about the copolymer role in the nanoparticles synthesis, computational tools were used to characterize the reactivity of the reactant species.  相似文献   

16.
Polylactide (PLA)/polycaprolactone (PCL) blends with various blend ratios were prepared via melt mixing. The morphology, linear and non-linear viscoelastic properties of the blend were studied using scanning electron microscope (SEM) and cone-plate rheometer. Three typical immiscible morphologies, i.e., spherical droplet, fibrous and co-continuous structure can be observed at various compositions. The elasticity ratio was proposed to play an important role together with the viscosity on the phase inversion because PLA/PCL blend presents a high viscosity ratio between two components. Two emulsion models were used to predict the linear viscoelastic properties of the blend with various morphologies. The Palierne model gives better fit compared with the G–M model, but both fail to predict the viscoelastic properties of the co-continuous blend. The viscoelastic behavior of those blends shows different temperature dependence due to their different morphologies. The principle of time–temperature superposition (TTS) is only valid for the co-continuous blend while fails with the rheological data of those blends with discrete spherical and fibrous domain structure. Moreover, although the discrete phase is difficult to be broken up due to the high viscosity ratio of the systems, the change of viscoelastic responses of those blends before and after preshear shows large difference, indicating that different morphologies have different sensitivity to the steady shear flow.  相似文献   

17.
Mixtures of biodegradable polymers, poly(dl-lactide) and poly(ε-caprolactone) monolayers at the air/water interface have been studied. Surface pressure-area isotherms of poly(dl-lactide), poly(ε-caprolactone) and their mixtures were obtained by monolayer compression at constant temperature. The behavior of the mixed monolayers was analyzed according to the classical addition rule. Good agreement was observed between experimental and ideal behavior except for one composition where a negative deviation was observed. The polymer monolayer miscibility was corroborated by comparison between the surface pressure-area isotherms of the random copolymers (dl-lactide-co-ε-caprolactone) and their mixtures at the same compositions. Brewster angle microscopy (BAM) shows homogeneity in the monolayers in the whole range of compositions. These results also confirm the miscibility of the mixtures.  相似文献   

18.
19.
Cross‐linked poly(ε‐caprolactone) (PCL)‐based polyesterurethane (PUR) systems have been synthesized through Diels–Alder reactions by reactive extrusion. The Diels–Alder and retro‐Diels–Alder reactions proved to be useful for enhancing the molecular motion of PCL‐based systems, and therefore their crystallization ability, in the design of cross‐linked semicrystalline polymers with one‐way and two‐way shape‐memory properties. Successive reactions between α,ω‐diol PCL (PCL2), furfuryl alcohol, and methylene diphenyl 4,4′‐diisocyanate straightforwardly afforded the α,ω‐furfuryl PCL‐based PUR systems, and subsequent Diels–Alder reactions with N,N‐phenylenedimaleimide afforded the thermoreversible cycloadducts. The cross‐linking density could be modulated by partially replacing PCL‐diol with PCL‐tetraol. Interestingly, the resulting PUR systems proved to be semicrystalline cross‐linked polymers, the melting temperature of which (close to 45 °C) represented the switching temperature for their shape‐memory properties. Qualitative and quantitative measurements demonstrated that these PUR systems exhibited one‐way and two‐way shape‐memory properties depending on their cross‐linking density.  相似文献   

20.
Three pseudorotaxanes (PpR) comprised of poly (ε-caprolactone) (PCL) and α-cyclodextrin (α-CD) with varying stoichiometric ratios were synthesized and characterized. Wide-angle X-ray diffraction (WAXD) and thermogravimetric (TGA) analyses provided conclusive evidence for complexation between the guest PCL and host α-CD. The as-synthesized and characterized PpRs were used at 10 and 20% concentrations as nucleants to promote the bulk PCL crystallization in composite films. Both WAXD and TGA provided evidence for intact PpR structures in the composite films. Isothermal differential scanning calorimetric (I-DSC) analyses, performed at various crystallization temperatures demonstrated significant differences in the crystallization patterns among the composite films. In addition, I-DSC analyses showed higher Avrami constant values (n) in the PpR-nucleated composite PCL films (n ~ 3), indicating 3-dimensional crystal growth. In the case of neat PCL films, however, lower n values indicated crystal growth in 1-dimensions or 2-dimensions. Moreover, atomic force microscopic analyses showed large crests and pits in PpR-nucleated PCL composites, with irregular morphologies leading to higher surface roughness. To the contrary, the crests and pits were much smaller in the neat PCL films, resulting in lower surface roughness values. Finally, mechanical testing revealed higher tensile strength for PpR-nucleated PCL composites films, demonstrating larger load bearing capabilities. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1529–1537  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号