首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work studied the possibility of utilizing nitrile rubber (NBR) to modify the impact properties of poly (ethylene-naphthalate) (PEN). The PEN/NBR ratio used changed from 100/0 to 60/40. At the same time, glass fibers (GF), 40% weight of the PEN component, were used to reinforce the blends to compensate for the loss of mechanical properties of PEN by incorporation of NBR. The results showed that the impact strength of the PEN/GF/NBR blend (PEN/NBR = 60/40) was increased up to 27.6J/m, nearly 5 times higher than that of the neat PEN. Meanwhile, the tensile strength and flexural strength were still maintained at as high as 66.1 MPa and 98.2 MPa, respectively. Dynamic vulcanization further improved the mechanical properties of the PEN/GF/NBR blends, which provided routes to the design of new PEN/elastomer blends. Other properties of the PEN/GF/NBR blends were also investigated in terms of morphology of fractured surface, dynamic mechanical behavior, thermal stability and crystallization, by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively.  相似文献   

2.
Research on short fibers/rubber foam composites is rarely found in the literature. In this paper, microcellular rubber foams unfilled (MF), strengthened by pretreated short fibers (MFPS) and untreated short fibers (MFUS) are prepared, respectively. The microstructure and mechanical properties of the three composites have been studied via scanning electron microscope (SEM) and mechanical testing, respectively. The SEM results show that both pretreated and untreated short fibers disperse uniformly in the composites and in bidimensional orientation. Moreover, the pretreated short fibers have much better adhesion with the rubber matrix than untreated ones. The experimental results also indicate that the introduction of short fibers is mainly responsible for the great enhancement of most mechanical properties of the microcellular rubber foams, and the good interfacial adhesion of the short fibers with the matrix contributes to the more extensive improvement in the mechanical properties. It is also found that the reinforcement effect of short fibers to compressive modulus strongly depends on the density of microcellular rubber foams, the orientation of short fiber and the deformation ratio. The compressive modulus of microcellular rubber foams at the normalized density less than 0.70 and beyond 0.70 is predicted by the modified Simple Blending Model and the Halpin-Kerner Model, respectively. The theoretically predicted values are in good accordance with the experimental results.  相似文献   

3.
Preferentially aligned short fiber reinforced nitrile rubber (NBR) composites with very high moduli at low elongation and high elongation at break were developed by using short and fine pineapple leaf fiber (PALF) and silica as the hybrid (two component) reinforcement. The amount of PALF was fixed at 10 parts (by weight) per hundred of rubber (phr) while that of silica was varied from 0 to 30 phr. Uniaxial NBR composites were prepared and tested for their mechanical properties in the directions both parallel and perpendicular to the fiber axis. Comparison was made against silica-NBR composites of the same total filler loadings. All composites with PALF display very distinct stress-strain curves. The stress rises sharply when the composite is stretched, while that of silica filled composites with the same loading rises gradually. The addition of silica initially lowers the early part of the stress-strain curve but prolongs breaking to greater strains. Further addition of silica raises the early part of the stress-strain curve back to and above that of the lower silica contents. It also significantly increases the elongation at break. Observation of other properties is also reported. Considering all the properties evaluated, reinforcement of NBR with PALF-silica hybrid shows great promise for engineering applications.  相似文献   

4.
This work proposes a simple method for improving the rubber to filler stress transfer in short pineapple leaf fiber-reinforced natural rubber (NR). This was achieved by replacing some of the non-polar NR by polar acrylonitrile butadiene rubber (NBR). The amount replaced was varied from 0% to 20% by weight. The mixing sequence was designed so that the fiber would be coated with polar NBR before being dispersed in the NR matrix. A comparison system in which the mixing was carried out in a single step was also examined. Despite the fact that the two rubbers are immiscible, it was found that significant improvement of the stress transfer in the low strain region can be obtained. The mixing sequence affected the mechanical properties of the resulting composites. It is concluded that frictional stress transfer between the immiscible rubbers contributes more to the total stress transfer than does the frictional stress transfer between non-polar NR and polar cellulose fiber.  相似文献   

5.
EPDM composites filled with short flax fibers were prepared by melt blending procedure. The effects of fiber loading on the mechanical, thermal and water uptake characteristics were studied. The physico-mechanical, morphological thermal properties and water absorption behavior were discussed using tensile testing, differential scanning calorimetry, thermogravimetrical analysis and scanning electron microscopy. Scanning electron microscopy revealed that the flax fibers were well dispersed in the polymer matrix. The tensile strength and hardness of the composites were found to be improved at higher fiber loading. The water absorption pattern of EPDM/fiber composites at room temperature follows a Fickian behavior for composites with 10, 15 and 20 phr flax fiber.  相似文献   

6.
Rubber composites with very high moduli at low elongation, high elongation at break and high ultimate breaking strength have been developed. The matrix was acrylonitrile butadiene rubber (NBR) and the hybrid (fibrous and particulate) reinforcements were short, fine pineapple leaf fiber (PALF) and carbon black. The amount of PALF was fixed at 10 parts (by weight) per hundred of rubber (phr) while that of carbon black was varied from 0 to 30 phr. Uniaxial NBR composites were prepared. Tensile strength, elongation at break, modulus and tear strength of the hybrid composites were characterized in both longitudinal (parallel to the fiber axis) and transverse (perpendicular to the fiber axis) directions. The addition of carbon black causes the slope of the early part of the stress–strain curve to increase and also extends breaking to greater strains. At carbon black contents of 20 phr and above, the stress–strain relation displays an upturn at high elongations, providing greater ultimate strength. Comparison with the usual carbon black filled rubber shows that the composite behavior at low strains is determined by the PALF, and at high strains by the carbon black. This high performance PALF-carbon black reinforced NBR shows great promise for engineering applications.  相似文献   

7.
《印度化学会志》2021,98(11):100162
In this study the correlations between protein contents of different kinds of natural rubber were considered with rheological behavior, compression set and hardness of rubber compounds based on natural rubber. At the first stage, protein contents were obtained by Kjeldahl method and correlated with normalized absorbance of amine band in NR's attenuated total reflection Fourier transform infrared spectra and shown linear behavior. At the second stage, correlations between the protein contents obtained by the spectra were considered with rheological behavior, compression set and hardness of rubber compounds and shown second order fitting models. The introduced models were applied to predict these features in case studies. Results were shown that Mooney viscosity, torque difference, optimum cure time, scorch time, cure rate index and hardness can be predicted by lower than 10% while compression set can be estimated by lower than 20% error. This significant attitude is a nondestructive and fast technique that uses little quantity of NR for prediction of some NR based compounds properties, before compounding.  相似文献   

8.
This paper describes an experimental study of the long term sealing performance of nitrile rubber joints on a manned deep ocean submersible operating down to 6000 m depths. An initial formulation showing large compression set is discussed first. Then results from long term laboratory testing of a second formulation, aged in water for 10 years, are presented. Much lower compression set and higher sealing forces are observed. Based on these results a testing methodology for the prediction of the long term sealing performance of nitrile O-rings is proposed. Results from laboratory tests are compared with those measured on joints aged for up to 10 years in service.  相似文献   

9.
10.
Zinc dimethacrylate functionalized graphene (Z‐GE), as reinforcing nanofiller for natural rubber (NR), was synthesized by liquid‐phase exfoliation and in situ method. The morphology and structure of Z‐GE were characterized to confirm the exfoliation and functionalization of GE. The NR/Z‐GE composites were prepared and investigated by mechanical analysis, crosslinked network analysis and the analysis of thermal conductivity. The results showed that the tensile strength, tear strength and modulus at 300% strain of NR/Z‐GE‐20 composites (contents 1.400 phr GE) were increased by 142%, 76% and 231% as compared with the pure NR, respectively. And the thermal conductivity of NR/Z‐GE‐30 composites is enhanced by 39% as that of the pure NR. This significant improvement is attributed to the formation of covalent crosslinked network and ionic crosslinked network and efficient interfacial interaction between GE and NR matrix. This method provides a new insight into the fabrication of multifunctional GE composites and enlarges its potential applications in high performance GE‐based rubber composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In situ synthesis of polyaniline (PAni) coated pyrogenic or fumed silica (PCFS) and precipitated silica (PCPS) were carried out by the oxidative polymerization of aniline in presence of fumed silica (FS) and precipitated silica (PS). Both uncoated and PAni coated silica fillers were characterized through scanning electron microscope (SEM), infrared spectroscopy and thermo-gravimetric analysis (TGA) to evaluate particle morphology and physico-chemical character of coated and uncoated silica particles. Semi-conducting composites made from two different types of PAni coated silica fillers with NBR exhibit different trend in the variation of electrical properties under different temperature and pressure. These differences in electrical properties of two types of composites are mainly due to physico-chemical characteristics of filler particles as well as their distribution in the polymer matrix. This type of composites may be used as semi-conducting and ESD (electrostatic discharge) material.  相似文献   

12.
Chlorinated nitrile rubber (Cl-NBR) has been blended with chlorinated ethylene propylene diene rubber (Cl-EPDM) in different ratios by a conventional mill mixing method. The effect of the blend ratio on processing characteristics, mechanical properties (such as tensile and tear strength, elongation at break, hardness, abrasion resistance, heat build-up and resilience), structure, morphology, glass transition temperature (Tg), thermal stability, flame retardancy, oil resistance, AC conductivity, dielectric properties and transport behavior of petrol, diesel and kerosene were investigated. The shift in absorption bands of blends studied from FTIR spectra, single Tg from DSC analysis and decrease in amorphous nature from XRD showed the molecular miscibility in Cl-NBR/Cl-EPDM blends. SEM images showed the uniform mixing of both Cl-NBR and Cl-EPDM in a 50/50 blend ratio. The TGA curves indicated the better thermal stability of the polymer blend. The elongation at break, heat build-up, resilience and hardness of the polymer blend decreases with an increase in Cl-NBR content in the blend whereas the flame and oil resistance were increased with increase in Cl-NBR content. Among the polymer blends, the maximum torque, tensile strength, tear and abrasion resistance was obtained for the 50/50 blend ratio because of the effective interfacial interactions between the blend components. AC conductivity and dielectric properties of polymer blend increased with increase in the ratio of Cl-NBR in the blend. Different transport properties such as diffusion, permeation and sorption coefficient were measured with respect to nature of solvent and different blend ratios. Temperature dependence of diffusion was used to estimate the activation parameters and the mechanism of transport found to be anomalous.  相似文献   

13.
Thermogravimetric study of rubber waste-polyurethane composites   总被引:1,自引:0,他引:1  
Granulated rubber obtained from used tyres, below 1.5 mm granularity (fine rubber) and polyurethane prepolymers (Chemolan M, Chemolan M50 and Chemolan B3) were used for the synthesis of rubber waste-polyurethane composites, containing 90, 85, 80, 75 and 70% w/w of fine rubber. The influence of the kind of polyurethane resin on hardness, elasticity, glass transition temperature and thermal stability of composites was studied. Kinetic parameters of the thermal degradation process of composites were calculated from thermogravimetric analysis (TG) data.This work has been financially supported by the State Committee for Scientific Research, Poland (research project-grant no. 3 T09B 043 19).  相似文献   

14.
This work analyses the rheological behaviour of thermoplastic elastomeric blends (TPE) based on ground tyre rubber (GTR), more specifically the rheological behaviour of binary and ternary polypropylene (PP) based blends with different rubber materials: an ethylene propylene diene monomer (EPDM), an ethylene propylene rubber (EPR) and GTR. The study was developed under steady-shear rate conditions by capillary rheometry at three different temperatures. Time–Temperature Superposition Principle (TTSP) was applied to the viscosity curves using a temperature dependent shift factor, allowing the construction of master curves for the analysed blends. The Cross-WLF model was used to predict the rheological parameters, giving numerical results for viscosity similar to the experimental data. GTR increased the blends viscosity. EPR showed rheological behaviour similar to PP, and EPDM presented higher power law behaviour. Pseudoplastic behaviour was observed for all the analysed blends. Incorporation of GTR in TPE blends for injection moulding purposes was found to be a feasible strategy to upcycle this type of potentially wasted material.  相似文献   

15.
The mechanism of radiation-induced structural changes in nitrile rubber with different acrylonitrile contents were investigated by ESR, NMR, and FTIR. To investigate new structures solid-state NMR methods had to be used due to crosslinking of the irradiated rubbers, and higher probe temperatures were used to obtain better resolution. The radicals generated on the acrylonitrile groups were found to abstract hydrogen from the adjacent butadiene units resulting in the formation of allylic radicals. These allylic radicals reacted to form intermolecular crosslinks and cyclisation. Cyclisation of the butadiene units were found to occur in the initial stages of the irradiation. Radiation yields of radicals increased with acrylonitrile content from 1.42, 1.58, to 2.42 for 18, 30, and 45% acrylonitrile rubbers. The radiation yields for intermolecular crosslinking were higher in rubbers with higher acrylonitrile contents, giving G values of 17.8, 21.3, and 24.5 for 18, 30, and 45% acrylonitrile rubbers, respectively. However, the crosslink clustering was found to be less in the rubbers with a higher acrylonitrile content. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The present work aims to prepare thermal and oxidation resistant Natural Rubber (NR) composites using antioxidant-modified nanosilica (MNS). The thermo-oxidative aging performance of the composites was evaluated by the variations in mechanical properties after aging at 100 °C for 24 h. The performance was further monitored through Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, and Dynamic Mechanical Analysis. NR nanocomposite with 1–7.5 phr nanosilica (NS) and 3 phr MNS were prepared and its rheological properties were studied. A comparative study of the theoretical models yielded that modified Guth-Gold equation predicted Young's modulus better than other models. Thermal stability of natural rubber MNS composite was improved by 10 °C with pre-eminent mechanical properties like tensile strength and heat build-up. A linear relationship of compression set with modulus of all composites were also established. Equilibrium swelling test revealed improved crosslink density in NR MNS composite. The strong interaction between antioxidant and nanosilica enabled low migration of antioxidant in NR MNS composite. Hence its protective function after aging showed more effective than NR NS composites. These versatile functional properties of NR MNS composite suggest its potential application in electrical, electronic and high performance rubber products.  相似文献   

17.
Stress concentration and weak interfacial strength affect the mechanical properties of short carbon fibers (CFs) reinforced polymer composites. In this work, the cauliflower-like short carbon fibers (CCFs) were prepared and the point was to illuminate the effects of fiber morphology on the mechanical properties of the CCFs/rigid polyurethane (RPU) composites. The results indicated that the surface structure of CCFs could increase the surface roughness of the fibers and the contact area between fibers and matrix, thereby promoting the formation of irregular interface. Compared with pure RPU and initial CFs/RPU composites, the strength and toughness of CCFs/RPU composites were simultaneously improved. The satisfactory performance was attributed to the special fibers structure, which played an anchoring role and consumed more energy during crack propagation.  相似文献   

18.
The present work presents and discusses the interrelation between composition, morphology, thermal history, mechanical and barrier properties to oxygen and limonene of composites of HDPE/MA-PE/cellulose fibers of significant interest in, among others, food packaging applications. From the overall results, it was observed that increasing the loading of purified alpha-cellulose fibers in the polyethylene matrix beyond 10 wt.% led to a decrease in the permeability coefficient of d-limonene, effect which was found to be primarily related to a decrease in the overall solubility of this strongly plasticizing aroma component. On the other hand, the oxygen permeability was found to decrease to a significant extend with increasing fiber content beyond 5 wt.%, but this effect was more strongly ascribed to a significant decrease in the diffusion coefficient. Therefore, the fibers are thought to generate a more tortuous path for the non-interacting gas molecules to travel across the composites thickness, even when tested at high relative humidity conditions. Optimum fiber loading levels in terms of overall property balance were found to be around 20 wt.%.  相似文献   

19.
Homogeneous catalytic hydrogenation of olefinic bonds in liquid carboxylated nitrile rubber (L-XNBR) has been carried out selectively in the presence of nitrile and carboxyl functionality using a six-membered cyclopalladate complex of 2-benzoyl pyridine as catalyst. The degree of hydrogenation has been calculated from IR and NMR spectroscopic studies. For example, 68% hydrogenation has been obtained for a sample (containing 0.057 carboxyl equivalent/100 g and 26.1% acrylonitrile) under 2.7 MPa hydrogenation pressure, 0.18 mmol/L catalyst, at 333 K for 1 h in acetone solution. The overall extent of hydrogenation depends on the catalyst-to-double-bond ratio. The kinetics of hydrogenation of L-XNBR has been investigated. The reaction exhibits a pseudo-first order dependence on the concentration of the substrate. The rate constant of the reaction is reduced by the increase in carboxyl and nitrile content of the polymer. The effect of temperature on reaction kinetics has also been studied and the activation energy of hydrogenation of L-XNBR is 20.2 kJ/mol. Intrinsic viscosity of the polymer remains unchanged during the reaction. A significant lowering of the glass transition temperature and improvement of thermal stability have been observed on hydrogenation. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
Hydrogenated nitrile rubber was prepared by using palladium acetate as the homogeneous catalyst system. The effect of different reaction parameters on the level of hydrogenation was studied. The extent of hydrogenation increased with increase in reaction time, temperature, pressure, and catalyst concentration. A maximum conversion of 96% could be achieved. The degree of hydrogenation was estimated from IR and NMR spectroscopy. The selectivity of the catalyst in reducing ? C?C? in presence of ? C?N was supported by IR and 13C-NMR spectra. ESCA studies further confirmed this observation. Properties of hydrogenated nitrile rubber were investigated by various techniques such as gel permeation chromatography (GPC), glass transition temperature (Tg), stress-strain behavior and rheological measurements. GPC studies showed no significant change in molecular weights of the products after the reaction. Tg value decreased with an increase in the level of hydrogenation. The ultimate stress improved significantly with the increase in the extent of hydrogenation. The die swell decreased with hydrogenation at a particular shear rate. The kinetics of the NBR hydrogenation were investigated. With the increase of the hydrogen pressure and catalyst concentration, the rate of the reaction increased. The reaction was apparently first order with respect to olefinic substrate at higher hydrogen pressure. The apparent activation energy, enthalpy, and entropy of the reaction were calculated as 29.9 kJ/mol, 27.42 kJ/mol, and –0.20 kJ mol?1 K?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号