首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Here in, magnetic nanoparticles combined with graphene oxide adsorbent were fabricated via a microwave‐assisted synthesis method, and used in the solid‐phase extraction of three phenolic compounds (phenol, 4‐nitrophenol, and m‐methylphenol) in environmental water samples. Various instrumental methods were employed to characterize the magnetic nanoparticles modified with graphene oxide. The influence of experimental parameters, such as desorption conditions, amount of adsorbent, extraction time, and pH, on the extraction efficiency was investigated. Owing to the high surface area and excellent adsorption capacity of the prepared material, satisfactory extraction was achieved. Under optimum conditions, a linear response was observed in the concentration range of 1.000–100.0 μg/L for phenol, 0.996–99.6 μg/L for 4‐nitrophenol, and 0.975–97.5 μg/L for m‐methylphenol, with correlation coefficients in the range of 0.9995–0.9997. The limit of detection (signal‐to‐noise ratio of 3) of the method varied between 0.5 and 0.8 μg/L. The relative standard deviations were <5.2%. The recovery percentages of the method were in the range of 89.1–104.3%. The results indicate that the graphene oxide‐modified magnetic nanoparticles possess high adsorptive abilities toward phenolic compounds in environmental water samples.  相似文献   

2.
In this work, a novel, efficient, and green sorbent, SiO2@Fe3O4 has been created and functionalized with 1‐butyl‐3‐methylimidazolium hexafluorophosphate as an ionic liquid. This sorbent was applied for microextraction of four beta blockers, propranolol, metoprolol, atenolol, and alprenolol with bupivacaine as internal standard from human plasma followed by liquid chromatography with mass spectrometric detection. A mixture of sodium bicarbonate and sodium dihydrogen phosphate was used as an extractant dispersive agent (effervescent power) to enhance the interaction between the magnetic sorbent and analytes. Main affecting parameters on microextraction and elution were optimized. Figures of merit for dispersive solid phase extraction with ionic liquid coated magnetic nanoparticles assisted by effervescent powder were calculated under the optimized conditions. The detection limits for propranolol, metoprolol, atenolol, and alprenolol were found at 0.33, 0.62, 0.03, and 0.44 ng/mL, respectively. For all analytes, good linearity was obtained. Intra‐ (n = 5) and interday (n = 10) precision were both under 6.3% while the preconcentration factors were obtained in the range between 15–18. The extraction efficiencies for each analyte ranged from 75 to 91%. The method was successfully applied for determination of trace amounts of the beta blockers in human plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号