首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
Composite hollow fibers membranes were prepared by coating poly(phenylene oxide) (PPO) and polysulfone (PSf) hollow fibers with high molecular polyvinylamine (PVAm). Two procedures of coating hollow fibers outside and respective inside were investigated with respect to intrinsic PVAm solution properties and hollow fibers geometry and material.The influence of operating mode (sweep or vacuum) on the performances of membranes was investigated. Vacuum operating mode gave better results than using sweep because part of the sweep gas permeated into feed and induced an extra resistance to the most permeable gas the CO2. The composite PVAm/PSf HF membranes having a 0.7–1.5 μm PVAm selective layer, showed CO2/N2 selectivity between 100 and 230. The selectivity was attributed to the CO2 facilitated transport imposed by PVAm selective layer. The CO2 permeance changed from 0.006 to 0.022 m3(STP)/(m2 bar h) in direct correlation with CO2 permeance and separation mechanism of the individual porous supports used for membrane fabrication. The multilayer PVAm/PPO membrane using as support PPO hollow fibers with a 40 nm PPO dense skin layer, surprisingly presented an increase in selectivity with the increase in CO2 partial pressure. This trend was opposite to the facilitated transport characteristic behaviour of PVAm/porous PSf. This indicated that PVAm/PPO membrane represents a new membrane, with new properties and a hybrid mechanism, extremely stable at high pressure ratios. The CO2/N2 selectivity ranged between 20 and 500 and the CO2 permeance from 0.11 to 2.3 m3(STP)/(m2 bar h) depending on the operating conditions.For both PVAm/PSf and PVAm/PPO membranes, the CO2 permeance was similar with the CO2 permeance of uncoated hollow fiber supports, confirming that the CO2 diffusion rate limiting step resides in the properties of the relatively thick support, not at the level of 1.2 μm thin and water swollen PVAm selective layer. A dynamic transfer of the CO2 diffusion rate limiting step between PVAm top layer and PPO support was observed by changing the feed relative humidity (RH%). The CO2 diffusion rate was controlled by the PPO support when using humid feed. At low feed humidity the 1.2 μm PVAm top layer becomes the CO2 diffusion rate limiting step.  相似文献   

2.
Fixed‐site–carrier membranes were prepared for the facilitated transport of CO2 by casting polyvinylamine (PVAm) on various supports, such as poly(ether sulfone) (PES), polyacrylonitrile (PAN), cellulose acetate (CA), and polysulfone (PSO). The cast PVAm on the support was crosslinked by various methods with glutaraldehyde, hydrochloric acid, sulfuric acid, and ammonium fluoride. Among the membranes tested, the PVAm cast on polysulfone and crosslinked by ammonium fluoride showed the highest selectivity of CO2 over CH4 (>1000). The permeance of CO2 was then measured to be 0.014 m3 (STP)/(m2 bar h) for a 20 μm thick membrane. The effect of the molecular weight of PVAm and feed pressure on the permeance was also investigated. The selectivity increased remarkably with increasing molecular weight and decreased slightly with increased pressure in the range of 1 to 4 bar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4326–4336, 2004  相似文献   

3.
A defect-free ultra thin PVAm/PVA blend facilitated transport membrane cast on a porous polysulfone (PSf) support was developed and evaluated in this study. The target membrane was prepared from commercial polyvinyl amine (PVAm) and polyvinyl alcohol (PVA). Effects of experimental conditions were investigated for a CO2–N2 mixed gas. A CO2/N2 separation factor of up to 174 and a CO2 permeance up to 0.58 m3(STP)/(m2 h bar) were documented. Experimental results suggest that CO2 is being transported according to the facilitated transport mechanism through this membrane. The fixed amino groups in the PVAm matrix function as CO2 carriers to facilitate the transport whereas the PVA adds mechanical strength to the blend by entanglement of the polymeric chains hence creating a supporting network. The good mechanical properties obtained from the blend of PVA with PVAm, enabled an ultra thin selective layer (down to 0.3 μm) to be formed on PSf support (with MWCO of 50,000), resulted in both high selectivity and permeance. The PVAm/PVA blend membrane also exhibited a good stability during a 400 h test.  相似文献   

4.
Technology designed to capture and store carbon dioxide (CO2) will play a significant role in the near-term reduction of CO2 emissions and is considered necessary to slow global warming. Nanoporous carbon (NPC) membranes show promise as a new generation of gas separation membranes suitable for CO2 capture.We have made supported NPC membranes from polyfurfuryl alcohol (PFA) at various pyrolysis temperatures. Positron annihilation lifetime spectrometry (PALS) and wide angle X-ray diffraction (WAXD) results indicate that the pore size decreases whilst the porosity increases with increasing pyrolysis temperature. The membrane performance results support these findings with a significant increase in permeance being seen with increasing pyrolysis temperature, which relates to the increase in porosity.Mixed gas performance measurements also show an increase in CH4 permeance as the operating temperature is increased from 35 to 200 °C, which can be related to an increase in the rate of diffusion. However, the selectivity decreases with increasing operating temperature due to the smaller changes in the CO2 permeance. These smaller changes in CO2 permeance can be related to the stronger adsorption of this gas on the carbon surface at lower operating temperatures. Interestingly, regardless of the original pyrolysis temperature, the selectivity at higher operating temperatures is similar, whereas the permeance remains related to this pyrolysis temperature.  相似文献   

5.
Three phase Pebax~? MH 1657/PEG-ran-PPG/CuBTC(polymer/liquid/solid) was successfully deposited as a selective layer on a porous Polysulfone(PSF) support. In fact, the beneficial properties of PEG(high selectivity) with those of PPG(high permeability, amorphous) have been combined with superior properties of mixed matrix membrane(MMMs). The membranes were characterized by DSC, TGA and SEM, while CuBTC was characterized by CO_2 and CH_4adsorption test. Statistically based experimental design(central composite design, CCD) was applied to analyze and optimize the effect of PEG-ran-PPG(10–50 wt%) and CuBTC(0–20 wt%) mass contents on the CO_2 permeance and CO_2/CH_4 ideal selectivity. Based on the regression coefficients of the obtained models, the CO_2 permeance was notably influenced by PEG-ran-PPG,while CuBTC has the most significant effect on the CO_2/CH_4 ideal selectivity. Under the optimum conditions(PEG-ran-PPG: 32.76 wt% and CuBTC: 20 wt%), nearly 620% increase in the CO_2 permeance and43% enhancement in the CO_2/CH_4 ideal selectivity was observed compared to the neat Pebax. The effect of pressure(3, 9 and 15 bar) on the pure and mixed gas separation performance of the composite membranes was also investigated. The high solubility of CO_2 in the membranes resulted in the enhancement of CO_2 permeability with increase in gas pressure.  相似文献   

6.
Most researchers focused on developing highly selective membranes for CO2/CH4 separation, but their developed membranes often suffered from low permeance. In this present work, we aimed to develop an ultrahigh permeance membrane using a simple coating technique to overcome the trade-off between membrane permeance and selectivity. A commercial silicone membrane with superior permeance but low CO2/CH4 selectivity (in the range of 2–3) was selected as the host for surface modification. Our results revealed that out of the three silane agents tested, only tetraethyl orthosilicate (TEOS) improved the control membrane’s permeance and selectivity. This can be due to its short structural chain and better compatibility with the silicone substrate. Further investigation revealed that higher CO2 permeance and selectivity could be attained by coating the membrane with two layers of TEOS. The surface integrity of the TEOS-coated membrane was further improved when an additional polyether block amide (Pebax) layer was established atop the TEOS layer. This additional layer sealed the pin holes of the TEOS layer and enhanced the resultant membrane’s performance, achieving CO2/CH4 selectivity of ~19 at CO2 permeance of ~2.3 × 105 barrer. This performance placed our developed membrane to surpass the 2008 Robeson Upper Boundary.  相似文献   

7.
Membrane separation of CO2 from natural gas, biogas, synthesis gas, and flu gas is a simple and energy‐efficient alternative to other separation techniques. But results for CO2‐selective permeance have always been achieved by randomly oriented and thick zeolite membranes. Thin, oriented membranes have great potential to realize high‐flux and high‐selectivity separation of mixtures at low energy cost. We now report a facile method for preparing silica MFI membranes in fluoride media on a graded alumina support. In the resulting membrane straight channels are uniformly vertically aligned and the membrane has a thickness of 0.5 μm. The membrane showed a separation selectivity of 109 for CO2/H2 mixtures and a CO2 permeance of 51×10?7 mol m?2 s?1 Pa?1 at ?35 °C, making it promising for practical CO2 separation from mixtures.  相似文献   

8.
In this study, graphene nanosheets (GNs) were incorporated into polyethersulfone (PES) by phase inversion approach for preparing PES-GNs mixed matrix membranes (MMMs). To investigate the impact of filler content on membrane surface morphology, thermal stability, chemical composition, porosity and mechanical properties, MMMs were constructed with various GNs loadings (0.01, 0.02, 0.03, and 0.04 wt%). ?The performance of prepared MMMs was tested for separation and selectivity of CO2, N2, H2 and CH4 gases at various pressures from 1 to 6 bar and temperature varying from 20 to 60 °C. It was observed that, compared to the pristine PES membrane, the prepared MMMs significantly improved the gas separation and selectivity performance with adequate mechanical stability. The permeability of CO2, N2, H2 and CH4 for the PES + 0.04 wt% GNs increases from 9 to 2246, 11 to 2235, 9 to 7151, and 3 to 4176 Barrer respectively, as compared with pure PES membrane at 1 bar and 20 °C due to improving the membrane absorption and porosity. In addition, by increasing the pressure, the permeability and selectivity of CO2, N2, H2 and CH4 are increased due to the increased driving force for the transport of gas via membranes. Furthermore, the permeability of CO2, N2, H2 and CH4 increased by increasing the temperature from 20 to 60 °C due to the plasticization in the membranes and the improvement in polymer chain movement. This result proved that the prepared membranes can be used for gas separation applications.  相似文献   

9.
In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used.  相似文献   

10.
Faujasite-type zeolite membranes were reproducibly synthesized by hydrothermal reaction on the outer surface of a porous α-alumina support tube of 30 or 200 mm in length. The membrane properties were evaluated by CO2 separation from an equimolar mixture of CO2 and N2 at a permeation temperature of 40°C. CO2 permeance and CO2/N2 selectivity of the NaY-type membranes were in the ranges of 0.4×10−6–2.5×10−6 mol m−2 s−1 Pa−1 and 20–50, respectively. The NaY-type membranes were ion-exchanged with alkali and alkaline earth cations. The LiY-type membrane showed the highest N2 permeance and the lowest CO2/N2 selectivity. The KY-type membrane gave the highest CO2/N2 selectivity. The NaY-type membrane was stable against exposure to air at 400°C. NaX-type zeolite membranes, formed by decreasing the ratio of SiO2/Al2O3 in the starting solution, exhibited lower CO2 permeances and higher CO2/N2 selectivities than those of the NaY-type zeolite membranes.  相似文献   

11.
The aim of current work is to study the interaction of process parameters including, temperature, CO2 feed composition and feed pressure were towards CO2 separation from CO2/CH4 binary gas mixture over hollow fiber mixed matrix membrane using design of experiment (DoE) approach. The hollow fiber mixed matrix membrane (HFMMM) containing NH2-MIL-53(Al) filler and cellulose acetate polymer was successfully spun and fibers with outer diameter of approximately 250–290 nm were obtained. The separation results revealed that the increment of temperature from 30 °C to 50 °C reduced the CO2/CH4 separation factor while, increasing feed pressure from 3 bar to 15 and increment of CO2 feed composition from 15 to 42.5 vol% increased the separation factor of HFMMM. The DoE results showed that the feed pressure was the most significant process parameter that intensely affected the CH4 permeance, CO2 permeance and CO2/CH4 separation factor. Based on the experimental results obtained, maximum CO2 permeance of 3.82 GPU was achieved at feed pressure of 3 bar, temperature of 50 °C and CO2 feed composition of 70 vol%. Meanwhile, minimum CH4 permeance of 0.01 GPU was obtained at feed pressure of 15 bar and temperature of 30 °C and CO2 feed composition of 70 vol%. Besides, maximum CO2/CH4 separation factor of 14.4 was achieved at feed pressure of 15 bar and temperature of 30 °C and CO2 feed composition of 15 vol%. Overall, the study on the interaction between separation processes parameters using central composite design (CCD) coupled with response surface methodology (RSM) possesses significant importance prior to the application of NH2-MIL-53(Al)/Cellulose Acetate HFMMM at industrial scale of natural gas purification.  相似文献   

12.
We report that 6FDA-2,6-DAT polyimide can be used to fabricate hollow fiber membranes with excellent performances for CO2/CH4 separation. In order to simplify the hollow fiber fabrication process and verify the feasibility of 6FDA-2,6-DAT hollow fiber membranes for CO2/CH4 separation, a new one-polymer and one-solvent spinning system (6FDA-2,6-DAT/N-methyl-pyrrolidone (NMP)) with much simpler processing conditions has been developed and the separation performance of newly developed 6FDA-2,6-DAT hollow fiber membranes has been further studied under the pure and mixed gas systems.Experimental results reveal that 6FDA-2,6-DAT asymmetric composite hollow fiber membranes have a strong tendency to be plasticized by CO2 and suffer severely physical aging with an initial CO2 permeance of 300 GPU drifting to 76 GPU at the steady state. However, the 6FDA-2,6-DAT asymmetric composite hollow fibers still present impressive ultimate stabilized performance with a CO2/CH4 selectivity of 40 and a CO2 permeance of 59 GPU under mixed gas tests. These results manifest that 6FDA-2,6-DAT polyimide is one of promising membrane material candidates for CO2/CH4 separation application.  相似文献   

13.
Thin nylon-SiO2 membranes made by sol–gel SiO2 coating of a nylon weaving were impregnated in a second step with an aqueous carbonic anhydrase solution. The biocatalytic hybrid membranes obtained were applied to the capture of CO2 from a N2–CO2 gas mixture containing 10% CO2, under a total pressure ≈ 1 atm. The CO2 permeance of these membranes was at least similar to those previously reported for liquid membranes. When impregnated with a 0.2 mg mL−1 enzyme solution in a pH ≈ 8 NaHCO3 buffer, the permeance of a nylon-SiO2 membrane was multiplied by a factor ≈ 3 when the buffer molarity was increased from 0.1 to 1 M. By comparison, this permeance only increased by a factor ≈ 1.3 without any enzyme in the same buffers. The permeance was also higher with the enzyme than without it: respectively ≈3.7 10−8 and ≈4.7 10−9 mol \textm\textmembrane - 2 {\text{m}}_{\text{membrane}}^{{^{ - 2} }} s−1 Pa−1 with and without enzyme, in a 1 M NaHCO3 buffer. A maximum permeance was observed for an enzyme concentration of ≈0.2 mg mL−1, possibly due to a competition between the H+ ions produced from CO2,aq by the enzyme and the H+ captured by the buffer. Besides, when the SiO2–CO2 contact was enhanced by the membrane architecture, SiO2 improved the CO2 permeance. The influence of an in situ CaCO3 deposit was also investigated and it improved the CO2 permeance when no enzyme was added.  相似文献   

14.
Greatly improved zeolite membranes were prepared by using high‐aspect‐ratio zeolite seeds. Slice‐shaped seeds with a high aspect ratio (AR) facilitated growth of thinner continuous SAPO‐34 membranes of much higher quality. These membranes showed N2 permeances as high as (2.87±0.15)×10?7 mol m?2 s?1 Pa?1 at 22 °C while maintaining a decent N2/CH4 selectivity (9–11.2 for equimolar mixture). On the basis of these thinner high‐quality SAPO‐34 membranes, fine‐tuning the local crystal structure by incorporating more silicon further increased the N2 permeance by 1.4 times without sacrificing the N2/CH4 selectivity. We expect that application of large AR zeolite seeds might be a viable strategy to grow thin high‐quality zeolite membranes. In addition, fine‐tuning of the crystal structure by changing the crystal composition might be a feasible way for further improving the separating performance of high‐quality zeolite membranes.  相似文献   

15.
Continuous microporous membranes are widely studied for gas separation, due to their low energy premium and strong molecular specificity. Porous aromatic frameworks (PAFs) with their exceptional stability and structural flexibility are suited to a wide range of separations. Main-stream PAF-based membranes are usually prepared with polymeric matrices, but their discrete entities and boundary defects weaken their selectivity and permeability. The synthesis of continuous PAF membranes is still a major challenge because PAFs are insoluble. Herein, we successfully synthesized a continuous PAF membrane for gas separation. Both pore size and chemistry of the PAF membrane were modified by ion-exchange, resulting in good selectivity and permeance for the gas mixtures H2/N2 and CO2/N2. The membrane with Br? as a counter ion in the framework exhibited a H2/N2 selectivity of 72.7 with a H2 permeance of 51844 gas permeation units (GPU). When the counter ions were replaced by BF4?, the membrane showed a CO2 permeance of 23058 GPU, and an optimized CO2/N2 selectivity of 60.0. Our results show that continuous PAF membranes with modifiable pores are promising for various gas separation situations.  相似文献   

16.
New polysulfone (PSF) copolymers from bis(4-fluorophenyl)sulfone and based on equimolar mixtures of the rigid/compact naphthalene moiety with bulky connectors from bisphenols: tetramethyl, hexafluoro, and tetramethyl hexafluoro, respectively, were synthesized to measure significant physical properties related to the gas separation field. The flexible and transparent polymer dense films TM-NPSF, HF-NPSF and TMHF-NPSF show high glass transition temperatures Tg  230 °C and high decomposition temperatures TD  400 °C (10 wt.% loss, in air). Free volume cavity sizes, as determined by PALS, are in the range of 94–139 Å3. Their gas permeability and selectivity combinations of properties, measured at 35 °C and 2 atm, are very attractive since their selectivity for the pair of gases H2/CH4, O2/N2, and CO2/CH4 are higher than those for commercial PSF membranes, having similar or superior permeability coefficients for the most permeable gases H2, O2, and CO2. Especially important is the tetramethyl naphthalene polysulfone TM-NPSF membrane which reports selectivities for H2/CH4, O2/N2 and CO2/CH4 of 122, 7.6 and 38 with corresponding permeability coefficients (in Barrers) of 17 for H2, 1.2 for O2, and 5.2 for CO2. These results are interpreted in terms of free volume size and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall selectivity coefficients.  相似文献   

17.
Mixed matrix membranes (MMMs) made from inorganic fillers and polymers is a kind of promising candidate for gas separation. In this work, two‐dimensional MXene nanosheets were synthesized and incorporated into a polyether‐polyamide block copolymer (Pebax) matrix to fabricate MMM for CO2 capture. The physicochemical properties of MXene nanosheets and MXene/Pebax membranes were studied systematically. The introduction of MXene nanosheets provided additional molecular transport channels and meanwhile enhanced the CO2 adsorption capacity, thereby enhancing both the CO2 peremance and CO2/N2 selectivity of Pebax membrane. The optimized MXene/Pebax membrane with a MXene loading of 0.15 wt % displayed a high separation performance with a CO2 permeance of 21.6 GPU and a CO2/N2 selectivity of 72.5, showing potential application in CO2 capture.  相似文献   

18.
The cost of membrane separation processes for removing CO2 and H2S from low-quality natural gas can be reduced for some concentration ranges of CO2 and H2S by utilizing concurrently two different types of polymer membranes, one with a high CO2/CH4 selectivity and the other with a high H2S/CH4 selectivity. The polymers considered in this exploratory study were 6FDA-HAB polyimide for the removal of CO2 and [poly(ether urethane urea)] (PEUU) for the removal of H2S. It was required that the concentrations of CO2 and H2S in low-quality natural gas be reduced to US pipeline specifications (≤2 mol% CO2 and ≤4 ppm H2S). Low-quality natural gas was simulated in this study by CH4/CO2/H2S mixtures containing up to 40 mol% CO2 and 10 mol% H2S. Twenty-seven membrane process configurations (PCs) were examined by computer simulations and optimized in order to determine the most economical configurations. Part I of this study considered only PCs without recycle streams [J. Hao, P.A. Rice, S.A. Stern, Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes. Part I. Process design and economics of membrane stages without recycle streams, J. Membr. Sci. 209 (2002) 177–206]. In Part II, reported below, the study was extended to two- and three-stage PCs with various recycle options. A sensitivity analysis was also made to determine the effects of variations in feed flow rate, feed pressure, membrane module cost, and wellhead price of natural gas on process economics. The economically optimal PCs were found to be either two membrane stages connected in series with or without recycle streams or single stages without recycle, depending on feed composition and selected operating conditions. The optimal two-stage PCs with recycle streams would utilize the H2S/CH4-selective membranes in the first stage and either the CO2/CH4 or the H2S/CH4-selective membranes, or both, in the second stage. Three-stage membrane PCs were not found to be economically competitive under the conditions assumed in this study.  相似文献   

19.
Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2/Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5 % CO2) and condition (humid), CO2 permeance and CO2/Xe selectivity stabilized at 2.0×10?8 mol m?2 s?1 Pa?1 and 67, respectively, during long‐term operation (>320 h). This endows DD3R zeolite membranes great potential for on‐stream CO2 removal from the Xe‐based closed‐circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe‐recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery.  相似文献   

20.
A concept demonstration has been made to simultaneously enhance both O2 and CO2 gas permeance and O2/N2 and CO2/CH4 selectivity via intelligently decoupling the effects of elongational and shear rates on dense-selective layer and optimizing spinning conditions in dual-layer hollow fiber fabrication. The dual-layer polyethersulfone hollow fiber membranes developed in this work exhibit an O2/N2 selectivity of 6.96 and an O2 permeance of 4.79 GPU which corresponds to an ultrathin dense-selective layer of 918 Å at room temperature. These hollow fibers also show an impressive CO2/CH4 selectivity of 49.8 in the mixed gas system considering the intrinsic value of only 32 for polyethersulfone dense films. To our best knowledge, this is the first time to achieve such a high CO2/CH4 selectivity without incorporating any material modification. The above gas separation performance demonstrates that the optimization of dual-layer spinning conditions with balanced elongational and shear rates is an effective approach to produce superior hollow fiber membranes for oxygen enrichment and natural gas separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号