共查询到20条相似文献,搜索用时 0 毫秒
1.
Ying Shah Zhou Dong Zhi Yang Jun Nie 《中国化学快报》2007,18(1):118-120
Crosslinked chitosan-based nanofibers were successfully prepared via electrospinning technique with heat mediated chemical crosslinking followed.The structure,morphology and mechanical property of nanofibers were characterized by attenuated total reflection-Fourier transform infrared spectroscopy(ATR-FTIR),scanning electron microscopy(SEM),Instron machine,respec- tively.The results showed that,nanofibers exhibited a smooth surface and regular morphology,and tensile strength of nanofibers improved with increasing of triethylene glycol dimethacrylate(TEGDMA)content. 相似文献
2.
Designing advanced biomaterials with regenerative and drug delivering functionalities remains a challenge in the field of tissue engineering. In this paper we present the design, development, and a use case of an electrospun nano-biocomposite scaffold composed of silk fibroin (SF), hardystonite (HT), and gentamicin (GEN). The fabricated SF nanofiber scaffolds provide mechanical support while HT acts as a bioactive and drug carrier, on which GEN is loaded as an antibacterial agent. Antibacterial zone of inhibition (ZOI) results indicate that the inclusion of 3–6 wt% GEN significantly improves the antibacterial performance of the scaffolds against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria, with an initial burst release of 10–20% and 72–85% total release over 7 days. The release rate of stimulatory silicon ions from SF-HT scaffolds reached 94.53±5 ppm after 7 days. Cell studies using osteoblasts show that the addition of HT significantly improved the cytocompatibility of the scaffolds. Angiogenesis, in vivo biocompatibility, tissue vascularization, and translatability of the scaffolds were studied via subcutaneous implantation in a rodent model over 4-weeks. When implanted subcutaneously, the GEN-loaded scaffold promoted angiogenesis and collagen formation, which suggests that the scaffold may be highly beneficial for further bone tissue engineering applications. 相似文献
3.
Shanshan Huang Xiaojiao Kang Ziyong ChengPing’an Ma Ye Jia Jun Lin 《Journal of colloid and interface science》2012,387(1):285-291
Luminescent Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers (MBGNFs) with average diameter of 100-120 nm were fabricated by electrospinning method. Pluronic P123 and N-cetyltrimethylammonium bromide (CTAB) were used as co-surfactants to generate porous structure of the nanofibers. N2 adsorption-desorption measurement reveals that the MBGNF:Eu3+ have a surface area of 188 m2 g−1, a pore volume of 0.246 cm3 g−1 and average pore size of 4.17 nm, and the MBGNF:Tb3+ have a surface area of 171 m2 g−1, a pore volume of 0.186 cm3 g−1 and average pore size of 3.65 nm. Photoluminescence measurements reveal that the MBGNF:Eu3+ show strong red emission dominated by the 5D0 → 7F2 transition of Eu3+ at 614 nm with a lifetime of 1.356 ms, and MBGNF:Tb3+ show strong green emission dominated by the 5D4 → 7F5 transition of Tb3+ at 544 nm with a lifetime of 1.982 ms. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of MBGNF. These luminescent nanofibers show sustained release properties for ibuprofen (IBU) in vitro. The emission intensities of Eu3+ in the drug delivery system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity. 相似文献
4.
Jae Hyeung Park Hyun Woo Lee Dong Keun Chae Weontae Oh Jae Deuk Yun Yulin Deng Jeong Hyun Yeum 《Colloid and polymer science》2009,287(8):943-950
Submicron fibers of the composite of poly(vinyl alcohol) (PVA), chitosan oligosaccharide [COS, (1→4)2-amino-2-deoxy-β-d-glucose], and montmorillonite clay (MMT) were prepared using electrospinning method with aqueous solutions. Scanning electron
microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetric analyzer, and tensile strength
testing machine (Zwick) were utilized to characterize the PVA/COS/MMT nanofiber mats morphology and properties. The PVA/COS
ratio and MMT concentration play important roles in nanofiber mat properties. XRD and TEM data demonstrated that exfoliated
MMT layers were well-distributed within nanofiber. It was also found that the mechanical property and thermal stability were
increased with COS and MMT contents. 相似文献
5.
通过静电作用和相分离技术制备海藻酸钠/壳聚糖静电复合弹性支架,研究了冷冻温度和固含量对支架材料孔径的影响及组分比对材料力学性能、亲水性、降解性能和生物相容性的影响.固含量为2%(质量分数)及冷冻温度为-24℃时,支架孔径为110~170μm,并且亲水性良好,平衡溶胀度大于1400%.改变固含量和组分比可调控材料的力学性能;循环力学测试表明,湿态支架具有良好的弹性和一定的耐疲劳性;降解速率可由组分比调控;兔脂肪干细胞(rASCs)在支架上的培养结果表明,羧基和氨基摩尔比为2∶1和1∶1时细胞以聚集体存在;羧基和氨基摩尔比为1∶2时细胞黏附于支架上,实现细胞黏附/聚集体的调控. 相似文献
6.
The present research is mainly based on the fabrication of biodegradable nanofiber mats (NFM) through the process of electrospinning using a novel combination of Gum Ghatti (GG) and Poly vinyl alcohol (PVA). The prepared NFM was crosslinked (CL-1) using Glutaraldeyde-HCl vapours and was characterized for its tensile strength along other analytical characterizations using FTIR, TGA, DSC and XRD. The mechanical strength of the NFM was found to be sufficiently high than in comparison to noncrosslinked sample and PVA NFM. The internal architecture of the CL-1 by use of atomic force microscopy (AFM) revealed that there was very well formed crosslinks suitable for drug loading as well as cell proliferation. The wound healing properties of the CL-1 in mice animal model indicated the healing within 5 days as compared to the control wound. Moreover, the sample was also analysed for its ability as polymeric scaffold and no toxicity was found onto the locally applied tissue on histological investigations. 相似文献
7.
Ieva E Trapani A Cioffi N Ditaranto N Monopoli A Sabbatini L 《Analytical and bioanalytical chemistry》2009,393(1):207-215
Chitosan-cyclodextrin hybrid nanoparticles (NPs) were obtained by the ionic gelation process in the presence of glutathione
(GSH), chosen as a model drug. NPs were characterized by means of transmission electron microscopy and zeta-potential measurements.
Furthermore, a detailed X-ray photoelectron spectroscopy study was carried out in both conventional and depth-profile modes.
The combination of controlled ion-erosion experiments and a scrupulous curve-fitting approach allowed for the first time the
quantitative study of the GSH in-depth distribution in the NPs. NPs were proven to efficiently encapsulate GSH in their inner
cores, thus showing promising perspectives as drug carriers. 相似文献
8.
Wound healing is a complex physiological procedure that includes diverse stages, comprising hemostasis, inflammation, proliferation, and remodeling to reconstruct the skin and subcutaneous tissue's integrity. As reported, various coexisting diseases (diabetes, vascular diseases, etc.) substantially impact wound healing. Factors like recurring injury, age, or hypertrophic scarring also affect wound healing. The management of wound care depends primarily on the advancement of novel and efficient wound dressing substances, and it persists to be a vivid research area in chronic wound healing. Over the past years, the investigation and advancement of wound dressing biomaterials have registered a new standard level, and superior knowledge based on chronic wound pathogenesis has been achieved. Recently, nanotechnology has presented an excellent method to accelerate acute and chronic wound healing via stimulating appropriate movement through the diverse healing stages. Among various nanomaterials, nanoparticles (NPs) have been spotlighted as an efficient treatment strategy for wound healing due to their ability to act as both a therapeutic and carrier system. Their small size and high surface area to volume ratio enhance the probability of bio-interaction and penetration at the wound area aiding cell–cell interactions, the proliferation of cells, cell signaling, and vascularization. This review endeavored to throw light on different aspects of wounds and the latest advances in nanoparticle-based biomaterials for effective wound healing. Further, challenges and future potentialities have been addressed. 相似文献
9.
《中国化学快报》2021,32(8):2448-2452
Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity,fast charge/discharge process,along with long-cycling life.Herein,a poly(ac rylo n it rile-co-β-methyl hydrogen itaconate) copolymer was prepared and used to synthesize flexible hollow carbon nanofibers(HCNFs) via an electrospinning method without breaking after multiple bending.Subsequently,the inner and outer surfaces of HCNFs were evenly covered with ordered needlelike polyaniline(PANI) through in-situ polymerization methods to obtain three-dimensional flexible HCNFs/PANI composites,which exhibited a high capacity 1196.7 F/g at 1 A/g and good cycling stability(90.1% retention at 5 A/g after 3000 cycles).The symmetrical supercapacitor based on the HCNFs/PANI composites also delive red an outsta nding electrochemical performance with high energy/power density(60.28 Wh/kg at 1000 W/kg) and superior cycling durability(90% capacitance retention after at 5 A/g3000 cycles),which confirmed that the HCNFs/PANI composites had a wide application potential in flexible energy storage devices. 相似文献
10.
Wound dressings based on nanofiber polymer scaffolds with good antimicrobial performance and skin reconstruction ability are promising options to thwart wound infection and accelerate wound healing. This paper reports on the synthesis via electrospinning of chitosan-alginate (CS-Alg) nanofiber dressings with various amounts of gentamicin (Gn; 0–10 wt%) as a drug delivery system. Smooth and continuous nanofibers with no obvious beads were created, with increases in the amount of Gn resulting in reduced fiber diameter. Antimicrobial tests showed the Gn-loaded nanofibers had good antibacterial performance as indicated by the inhibition of bacterial growth. CS-Alg nanofibers loaded with higher Gn concentrations exhibited greater antibacterial performance than those with lower Gn concentrations. In vitro cell culture studies demonstrated that CS-Alg wound dressings with 1–3% Gn improved L929 cell attachment and proliferation more than wound dressings with higher Gn concentrations. In vivo experiments revealed that Cs-Alg nanofibers loaded with 3% Gn significantly enhanced skin regeneration in a Balb/C mice model by stimulating the formation of a thicker dermis, increasing collagen deposition, and increasing the formation of new blood vessels and hair follicles. Collectively, Gn-loaded CS-Alg wound dressings can be considered a good candidate for drug delivery systems and skin regeneration applications. 相似文献
11.
Xiao-Jun Huang 《European Polymer Journal》2007,43(9):3710-3718
Nanofibrous membrane with a fiber diameter of 80-150 nm was fabricated from mixed chitosan/poly(vinyl alcohol) (PVA) solution by an electrospinning process. Field emission scanning electron microscope and transmission electron microscope were used to characterize the morphology of the nanofibrous membrane. It was found that chitosan nanofibrous membrane with stabilized morphology could be prepared through removing most of PVA from the nascent one with 0.5 M NaOH aqueous solution. This treatment also resulted in an obvious decrease in fiber diameter. The stabilized chitosan nanofibrous membrane was explored as support for enzyme immobilization due to the characteristics of excellent biocompatibility, high surface/volume ratio, and large porosity. Lipase from Candida rugosa was immobilized on the nanofibrous membrane using glutaraldehyde (GA) as coupling reagent. The properties of the immobilized lipase were assayed and compared with the free one. Results showed that, the observed lipase loading on this nanofibrous membrane was up to 63.6 mg/g and the activity retention of the immobilized lipase was 49.8% under the optimum condition. The pH and thermal stabilities of lipase were improved after it was immobilized on the chitosan nanofibrous membrane. In addition, the experimental results of reusability and storage stability indicated that the residual activities of the immobilized lipase were 46% after 10 cycles and 56.2% after 30 days, which were obviously higher than that of the free one. 相似文献
12.
Muzzalupo R Nicoletta FP Trombino S Cassano R Iemma F Picci N 《Colloids and surfaces. B, Biointerfaces》2007,58(2):197-202
Niosomes have shown promise as cheap and chemically stable drug delivery systems. In this paper a novel crown ether amphiphile, 1,16-hexadecanoyl-bis-(2-aminomethyl)-18-crown-6 (Bola A-16), has been synthesized with the aim of developing a long time stable controlled release system. Niosomes have been prepared with different molar ratios of amphiphile and cholesterol and their morphological properties have been determined by quasi-elastic light scattering and transmission electron microscopy. The composition of niosomes affects the entrapment efficiency and the release rate of 5-fluorouracil, a well-known antineoplastic molecule. In addition, other two known azacrown ether amphiphiles (4,7,10,13-pentaoxa-16-aza-cyclooctadecane)-hexadecanedioc acid diamide (Bola D-16) and ,ω-(4,7,10,13-pentaoxa-16-aza-cyclooctadecane)-hexadecane (Bola C-16), have been synthesized and the obtained vesicles have been characterized for comparison. Furthermore, the release profile of 5-fluorouracil in vitro, from these niosomes, has been studied over a period of 6 h in order to simulate a hematic adsorption. 相似文献
13.
Electrospinning is currently the most popular method for producing polymer nanofibers. However, the low production rate and safety concern limit the practical use of electrospinning as a cost-effective nanofiber fabrication approach. Herein, we present a novel and simple centrifugal spinning technology that extrudes nanofibers from polymer solutions by using a high-speed rotary and perforated spinneret. Polyacrylonitrile (PAN) nanofibers were prepared by selectively varying parameters that can affect solution intrinsic properties and operational conditions. The resultant PAN nanofibers were characterized by SEM, and XRD. The correlation between fiber morphology and processing conditions was established. Results demonstrated that the fiber morphology can be easily manipulated by controlling the spinning parameters and the centrifugal spinning process is a facile approach for fabricating polymer nanofibers in a large-scale and low-cost fashion. 相似文献
14.
海藻酸作为新型药物转运载体的开发 总被引:5,自引:0,他引:5
海藻酸(Alginate或ALG)的药理学基础和在药物上的实际应用证明,海藻酸具有良好的生物相容性,由于在温和条件下与二价阳离子形成凝胶等独特的物理化学性能,用它作为缓释包衣、结肠给药、微球栓塞、纳米给药、基因治疗、眼部给药、外科修复材料和透皮给药等新剂型药物转运载体,可使药物疗效提高,毒副作用减小,用药更方便。本文综述了国内海藻酸产品的现状,阐述了海藻酸的开发前景。 相似文献
15.
The main aim of this study is to formulate the combination of the bioactive composite containing chitosan/β -tricalcium phosphate (CH/β-TCP) as potential drug delivery platforms for the sustained release of antibiotics. Herein the mode of amoxicillin (AMX) maintained in the β-TCP/chitosan composite was characterized using XRD, FT-IR to confirm the phase purity and functional groups. SEM was used to examine the size and shape of particles. The SEM images of the biocomposites after drug release confirmed that they are biodegradable. In vitro drug release experiments in PBS (pH 7.4) revealed a sustained release profile in a neutral medium. Drug release profiles were evaluated according to five different kinetic models including Zero Order, First Order, Higuchi, Hixon Crowel, and Korsmeyer-Peppas. The release profile was best expressed by the Korsmeyer Peppas model because the results showed high linearity. Overall, the positive effect of chitosan coating on the drug elution profile of β-TCP as carriers for the controlled delivery of antibiotics was regarded as biocompatible for the controlled drug delivery system. 相似文献
16.
This review deals with electrospun nanofibers and their applications in several fields. Nanofibers have mainly been produced via electrospinning technique due to the simple, cost-effective, and versatile setup. Electrospinning is defined as a process, which produces fibers from its polymer solutions under exposure of high electric field voltage. The technique needs optimization of several parameters such solution, processing and ambient parameters to refine nanofiber morphology, diameter and porosity. The basic technique has been modified to produce composite fibers and to increase production capacity. Nanofiber characterization methods are summarized with examples. The relation between electrospinning and electrospraying is discussed. Nanofibers have the ability to form highly porous mesh with large surface to volume ratio enhancing its performance for various applications such as water filtration, tissue engineering scaffold, wounds, fiber composites, drug release and protective clothes. Single nanofibers could potentially be used as soft microrobots for drug delivery. Finally, results from modeling and simulations are illustrated. 相似文献
17.
《Arabian Journal of Chemistry》2022,15(6):103869
Intact skin is the first physical barrier against all microbial infections. Thus, in the cases of wounds, burns, and skin damage, bacteria can infect and invade the deeper layers of skin to the bloodstream and other organs leading to severe illnesses. Thus, our study aims to investigate the potential activity of natural products, propolis and honeybee venom, to control wound infections with multi-drug resistant Staphylococcus aureus (MDRSA) and safely accelerate the wound healing. First, this study characterized the clinically isolated S. aureus using biochemical, molecular, and antibiotic sensitivity tests. Then, the hydrogel was prepared via mixing chitosan with honey, propolis, and venom at different ratios, followed by physicochemical characterization and biological examination. The in vivo experiment results after topical application of optimum concentrations revealed that both venom and propolis have significant antibacterial activity at different temperatures. The IC50 of both propolis antioxidant and cytotoxicity assays was found to be 40.07 ± 2.18 μg/mL and 18.3 μg/mL, respectively. The cocktail bacteria showed both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 10 µg/mL and of 300 µg/mL with venom respectively & MIC and MBC of 100 µg/mL, 300 µg/mL with propolis respectively. The use of hydrogel was effective against wound infection and enhanced wound healing during 14 days. Before starting clinical trials, further studies can be done on large animal models. 相似文献
18.
A novel copolymer P(CS–Ma–DMAEMA) was synthesized with chitosan (CS), maleic anhydride (Ma) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) by grafting and copolymerization. The copolymer obtained was analyzed by FT-IR, 1H NMR and UV, and the molecular weight and polydispersity were determined by gel permeation chromatography (GPC). The average size and distribution of copolymer micelles were determined by dynamic light scattering (DLS). Their aqueous solution properties and controlled coenzyme A delivery were also studied. It was found that the copolymer had temperature sensitivity and pH sensitivity. The factors affecting release behavior, such as concentration, pH and temperature were discussed in this paper. The higher concentration of the copolymer aqueous solution absorbed more coenzyme A than the lower one. The increasing temperature accelerated the drug release from the copolymer. The pH of the copolymer solution had significant impact on the release of coenzyme A. The results suggested that the novel copolymer could be used as drug delivery carrier. 相似文献
19.
《Arabian Journal of Chemistry》2020,13(4):4882-4894
Fluorescent carbon nanoparticles (CNPs) are a new class of carbon nanomaterials and have demonstrated excellent optical properties, good biocompatibility, great aqueous solubility, low cost, simple synthesis, etc. Since their discovery, various synthesis methods using different precursors have been developed, and are mainly classified as top-down and bottom-up approaches. The contact angle measurements revealed that wettability of plain chitosan film reduced due to addition of carbon nanoparticles. It was found that, impregnation of carbon dots into chitosan film resulted in an almost seven fold decrease in the water absorption capacity of the film. The equilibrium moisture uptake (EMU) data of plain chitosan and CQD-loaded chitosan films were interpreted by GAB isotherm and related parameters were also evaluated. Finally, the moisture permeation capacities of the plain Ch and Carbon dots loaded sample Ch/CNP was found to be 1758 and 956 g/m2/day. In addition, Bovine serum albumin (BSA) adsorption was found 24.2 mg/m2 for plain sample while it decreased to 14.1 mg/m2 as CDs were incorporated into film matrix. The anti-oxidant property was evaluated in terms of % scavenging of DPPH, SO and Hydroxyl radicals. It was observed that for all the free radicals, % scavenging increased with increase in CDs contents in the films. 相似文献
20.
Cross-linked polyvinyl alcohol/polyvinyl pyrrolidone/zeolite fibers were prepared in the presence of potassium peroxodisulphate (K2S2O8) under the curing process by the electrospinning technique. The narrowest nanofibers of PVA/PVP (50:50) were prepared under optimum experimental conditions of 2.5 × 10?4 mol of K2S2O8, an applied voltage of 22 KV, the distance of 15 cm and the feed rate of 0.2 mL/h. The progress of the cross-linking was examined by immersion of the prepared nanofibers in water and following the swelling degrees. By raising the K2S2O8 amount and curing time, the cross-linking density was increased. X-ray diffraction (XRD) demonstrated that the crystallinity of the nanofibers was decreased by the increase of K2S2O8 and the lowest crystallinity was observed for PVA/PVP (70:30). The contact angle of nanofibers was decreased from 72° to 34 by increasing PVP ratio from 30 to 70. The morphology of the nanofibers before and after immersion in the simulated body fluid (SBF) was studied using electron scanning microscopy (SEM) and PVA/PVP (70:30) showed the highest changes in the morphology while the lowest one was observed for PVA/PVP (50:50). Moreover, the cross-linked PVA/ PVP with the ratio of 50:50 had the narrowest diameter of 200 ± 100 nm, and by addition of about 0.5% zeolite, it was even reduced more to 150 ± 50 nm. The cross-linked nanofibers (50:50) with 0.5 wt% and 1.5 wt% zeolite nanoparticles showed the tensile modules of 416.26 and 703.52 MPa, respectively, while in the absence of zeolite, it was209.25 MPa. Fibroblast L929 cells were cultured on the cross-linked PVA/PVP/zeolite (50:50:0.5) nanofiber, and the cell proliferation and growth was evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Fibroblasts grew on the surface of scaffold showed good morphology and proliferation after seven days and the absorption amount was increased from 0.075 to 0.78 相似文献