首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Pyrrole-based polymers ( PBPs ), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.  相似文献   

2.
《先进技术聚合物》2018,29(10):2612-2618
In this work, the uniaxial stretching poly (vinyl alcohol) (PVA) films with glycerol as plasticizer were prepared to explore the influence of drawing temperature and drawing ratio. The structure and property were investigated with scanning electron microscope, wide‐angle X‐ray diffraction, X‐ray diffraction, differential scanning calorimetry, mechanical tests, etc. With the increase of stretching temperature, the melting and crystallization temperatures increased. The tensile strength and Young modulus of glycerol/PVA films increased first and then decreased; when the temperature was 80°C, the tensile strength and Young modulus reached to maximum values of 197.2 and 470 MPa, respectively. In addition, with the increase of draw ratio, the orientation degree of the PVA molecular chains increased, indicating the improved regularity of molecular chains. When the PVA films were stretched to 4 times, the tensile strength and Young modulus of the films reached 162 and 143 MPa, respectively, which were 4 and 1.3 times compared with those of unoriented films. These environmentally friendly PVA films with excellent mechanical properties would find wide applications in the industry such as packaging, coating, etc.  相似文献   

3.
Results of the investigation of volatile organic compounds emission during polyethylene extrusion are presented. Two polymers of different processing properties were tested, namely linear low density polyethylene (ExxonMobil) and high density polyethylene (Liten FB 29). Blowing film extrusion in experimental technological line using a single screw extruder as the imported element was done. VOCs were collected on sorbent tubes containing Tenax. Gas chromatography coupled with mass spectrometry (GC/MS) was applied for the identification of volatile degradation products. PE LLD material emits a significantly larger amount of hydrocarbons than PE-HD. Its emission contains mainly C18 and C20 hydrocarbons (alkanes, 1-alkenes, and α,ω-alkadienes). In case of the PE-HD polymer, lower degradation was observed and C18 and C23 hydrocarbons were emitted.  相似文献   

4.
Two DSC exotherms for cis-trans thermal isomerization of polyacetylene (PA) films were found near 145 and 170°C. These exotherms are related to the higher-order structure of PA films, depending on the sample preparation conditions. The high-temperature peak corresponds to ordered crystallites (A state), which is prominent in conventional Shirakawa polyacetylene (S-PA) and moderately stretchable PA (ms-PA) films. The low-temperature peak corresponds to disordered crystallites (B-state) found in highly stretchable PA (hs-x) films. The distribution of crystalline order in the B state depends on the materials. The A state is transformed to B state upon stretching of ms-PA, but the B state is not transformed to A state by stretching. The supermolecular structure is discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Ultra-high molecular weight polyethylene (UHMWPE) fibre has great potential for strengthening structures against impact or blast loads. A quantitative characterization of the mechanical properties of UHMWPE fibres at varying strain rates is necessary to achieve reliable structural design. Quasi-static and high-speed tensile tests were performed to investigate the unidirectional tensile properties of UHMWPE fibre laminates over a wide range of strain rates from 0.0013 to 163.78 s−1. Quasi-static tensile tests of UHMWPE fibre laminates were conducted at thicknesses ranging from 1.76 mm to 5.19 mm. Weibull analysis was conducted to investigate the scatter of the test data. The failure mechanism and modes of the UHMWPE fibre laminates observed during the test are discussed. The test results indicate that the mechanical properties of the UHMWPE fibre laminate are not sensitive to thickness, whereas the strength and the modulus of elasticity increase with strain rate. It is concluded that the distinct failure modes at low and high strain rates partially contribute to the tensile strength of the UHMWPE fibre laminates. A series of empirical formulae for the dynamic increase factor (DIF) of the material strength and modulus of elasticity are also derived for better representation of the effect of strain rate on the mechanical properties of UHMWPE fibre laminates.  相似文献   

6.
Adding insulating polymers to conjugated polymers is an efficient strategy to tailor their mechanical properties for flexible organic electronics. In this work, we selected two insulating polymers as additives for high-performance photoactive layers and investigated the mechanical and photovoltaic properties in organic solar cells (OSCs). The insulating polymers were found to reduce the electron mobilities in the photoactive layers, and hence the power conversion efficiencies were significantly decreased. More importantly, we found that the insulating polymers exhibited negative effect on the mechanical properties of the photoactive layers, with reduced Young's modulus and low crack onset strains. Further studies revealed that the insulating polymers had poor miscibility with the photoactive layers, providing large domains and more cavities in blend thin films, which act as negative effect for the tensile test. The studies indicate that rational selection of insulating polymers, especially enhancing the non-covalent interaction with the photoactive layers, will be critically important for the stretchable OSCs.  相似文献   

7.
Ultra-high molecular weight polyethylene/multi-wall carbon nanotube (UHMW-PE/MWNT) composites have been prepared by a novel approach which involves the use of a mixture of solvents during the gelation process. By combining one of the best known organic solvents for nanotubes, N,N-dimethylformamide (DMF) with xylene and use this mixed-solvent in the gelation/crystallisation process for UHMW-PE/MWNT composite fabrication, an attempt is made to improve the dispersion of carbon nanotubes in UHMW-PE. The obtained films were drawn to obtain highly oriented tapes, which were characterized in terms of electrical and mechanical properties. The conductivity of the drawn tapes is maintained at 10−4 S/m at draw ratio 30, two orders of magnitude higher than the minimum level required to provide electrostatic discharge. Although the mechanical properties are compromised by use of DMF and MWNTs, the Young’s modulus still remains at 25 GPa, in comparison with 35 GPa for pure UHMW-PE tape at draw ratio 30.  相似文献   

8.
It has previously been shown possible to use highly oriented polypropylene (PP) tapes to create self-reinforced (all-PP) composites. It is desirable to understand the relationship between tape processing parameters and the mechanical properties and thermal stability of the tapes, as these tape properties will govern the ultimate properties of the all-PP composite. In this paper, the effects of the tape drawing parameters such as draw ratio (λ), drawing temperature and thermal annealing on the final mechanical properties, density and dimensional thermal stability of the tapes are presented. PP tapes drawn to λ = 17 possess tensile moduli of ~15 GPa and tensile strengths of ~450 MPa. PP tapes with high draw ratios, λ > 9.3, show a decrease in density, a change from transparent to opaque appearance and increased dimensional thermal stability with increasing draw ratio. The results of an investigation into the effects of a thermal annealing step, targeted at improving the dimensional thermal stability of these highly oriented PP tapes, are also presented.  相似文献   

9.
The present work was aimed to improve further upon the mechanical properties of gel spun polyethylene fibres of ultrahigh modulus and tenacity. Cross-links were introduced by electron irradiation of the gelsbefore drawing. Under the present circumstances this resulted in much more favourable creep properties, of the fibres and tapes and also to retention of much of their strength after holding at 200 °C, without, however, significantly affecting drawability and the resulting high modulus and strength.  相似文献   

10.
Two kinds of novel aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 3-amino-4′-(4-aminophenoxy)-benzophenone, was successfully synthesized by two different synthetical routes and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride, via a conventional two-step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, mechanical properties tests, IR-FT, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.54-0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low-boiling-point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 10% weight loss) above 573 °C and glass-transition temperatures in the range of 222-251 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 86.5-121.6 MPa, elongations at break of 9-16%, and initial moduli of 1.26-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.  相似文献   

11.
This article deals with the characterization of blend films obtained by mixing poly(vinyl alcohol) (PVA) and konjac glucomannan (KGM) in aqueous solution. The DTA curves of PVA/KGM blend films showed overlapping of the main thermal transitions characteristic of the individual polymers. The exothermic peak at 312°C, which resulted from the thermal degradation of the KGM, shifted slightly to a higher temperature at low PVA content (≤20 wt%). The weight-retention properties of the blend films indicated that thermal stability of the blend films were better than pure KGM film at PVA content below 20 wt%. The crystallinities, tensile strength, and elongation at break of the films increased with the PVA content, and reached the maximum values at 20 wt% PVA, then decreased. Changes in the carbonyl stretching band of KGM and hydroxyl stretching regions of KGM and PVA were detected by FTIR analysis. Those are attributable to the existence of a certain degree of inteaction between KGM and PVA, and resulted from intermolecular hydrogen bonds. Phase separation phenomena were observed by examining the surface of the blend films by SEM.  相似文献   

12.
《先进技术聚合物》2018,29(2):1002-1006
Candida antarctica lipase B was immobilized for the first time (at the author's knowledge) onto linear low density polyethylene (LLDPE) films. Polymer films were previously bonded to a commercial aluminum sheet using a simple support preparation method. Biocatalyst performance was evaluated in penthyl oleate synthesis at room temperature. Two different catalyst geometries were tested and compared: one aluminum‐polyethylene 50 mm × 50 mm foil (50CAT) or near 5 mm × 5 mm aluminum‐polyethylene foils (5CAT). The obtained results demonstrate that the biocatalyst obtained with 50 mm × 50 mm aluminum‐polyethylene foil or 50CAT is reusable in up to 7 cycles, easy to separate from reaction products, and economical in comparison with commercial Novozym 435. Novel and economical CALB/LLDPE/Al biocatalyst is an attractive alternative for possible applications in a continuous monolithic reactor and future industrial scaling up.  相似文献   

13.
Cellulose-synthetic polymer nanocomposite films were prepared by immersion of cellulose gel in polymer solutions followed by dry casting. The cellulose hydrogel was prepared from aqueous alkali-urea solution. As the synthetic polymer, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were used. The polymer content could be changed between 10 and 80% by changing polymer concentration of immersing solution. While the mechanical properties of the cellulose-PMMA composite films showed a nearly linear dependence on PMMA content, those of cellulose-PS composites showed an anomalous behavior; both tensile strength and Young’s modulus showed prominent maxima at 15–30 wt% PS contents. This anomaly may have resulted from the specific interaction between the aromatic ring of PS and the hydrophobic plane of the glucopyranoside. Both PMMA and PS composite films showed significant improvements in dimensional thermal stability; up to 25 wt% synthetic polymer content, the coefficient of thermal expansion (CTE) was as low as ca. 30 ppm/K, about 1/3 of the pure polymers. This indicates that the regenerated cellulose network is effective in suppressing thermal expansion of the synthetic polymers.  相似文献   

14.
Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.  相似文献   

15.
The effect of fullerene C60 on the structure and mechanical properties of poly(methyl methacrylate) films are studied via the methods of X-ray diffraction, mechanics, and optical and atomic-force microscopy. The findings of this study are verified with the use of the data obtained for amorphous and semicrystalline samples of other polymers, primarily carbochain polymers of the vinyl series, such as polyethylene, polypropylene, and polystyrene.  相似文献   

16.
Cast film composites have been prepared from aqueous polymer solutions containing nanometric silica particles. The polymers were polyvinyl alcohol (PVA), hydroxypropylmethylcellulose (HPMC) and a blend of PVA‐HPMC polymers. In the aqueous dispersions, the polymer–silica interactions were studied through adsorption isotherms. These experiments indicated that HPMC has a high affinity for silica surfaces, and can adsorb at high coverage; conversely, low affinity and low coverage were found in the case of PVA. In the films, the organization of silica particles was investigated through transmission electron microscopy (TEM) and small‐angle neutron scattering (SANS). Both methods showed that the silica particles were well‐dispersed in the HPMC films and aggregated in the PVA films. The mechanical properties of the composite films were evaluated using tensile strength measurements. Both polymers were solid materials, with a high‐elastic modulus (65 MPa for HPMC and 291 for PVA) and a low‐maximum elongation at break (0.15 mm for HPMC and 4.12 mm for PVA). In HPMC films, the presence of silica particles led to an increase in the modulus and a decrease in the stress at break. In PVA films, the modulus decreased but the stress at break increased upon adding silica. Accordingly, the polymer/silica interaction can be used to tune the mechanical properties of such composite films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1134–1146, 2006  相似文献   

17.
Three types of low‐density polyethylene materials were investigated with respect to the influence of the molecular architecture on the mechanical and use properties of blown films. The materials were a branched polyethylene synthesized by free‐radical polymerization under high‐pressure (HP‐LDPE), a linear ethylene–hexene copolymer (ZN‐LLDPE) produced by low‐pressure Ziegler–Natta catalysis, and an ethylene–hexene copolymer (M‐LLDPE) from metallocene catalysis. The extrusion and blowing conditions were identical for the three materials, with a take‐up ratio of 12 and a blow‐up ratio of 2.5. The blown films displayed a decreasing puncture resistance in the order M‐LLDPE, ZN‐LLDPE, and HP‐LDPE. In parallel, the tear resistance of the films became increasingly unbalanced in the same order of the polymers. The morphological study showed an increased anisotropy of the films in the same polymer order, the crystalline lamellae being increasingly oriented normal to the take‐up direction. This texturing caused a detrimental effect on the mechanical properties of the films, notably increasing the capacity for crack propagation. The phenomenon was ascribed to the kinetics of chain relaxation in the melt that governed the ability of the chains to recover an isotropic state from the flow‐induced stretching before crystallization. The puncture resistance was examined in terms of both texture and strain‐hardening capabilities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 327–340, 2003  相似文献   

18.
Here, we synthesized two kinds of novel conjugated block copolymers P1 and P2 by reacting squaric acid and three kinds of homemade diamine monomers. The polymers P1 and P2 can be dissolved in many normal organic solvents and form films by solution-cast method with high mechanical properties. In addition, when the 10% weight loss is selected as a reference point, the polymers P1 and P2 showed the thermal decomposition temperatures at around 309 and 312 °C, respectively. The polymer films exhibit high coloration efficiencies (CE) (262–282 cm2 C−1) and good cyclic stabilities. In addition, the ITO/polymer/Al sandwich memory devices exhibited non-volatile resistive switching behaviors with low write, erase voltages (more than −0.6 V and less than 3.1 V, respectively), good ON/OFF ratio (843 and 1435) and reliable cycling endurance (more than 30,000 cycles). These properties illustrate that the polymers could be considered as potential electrode materials for both electrochromic and resistive memory devices.  相似文献   

19.
Summary The experimental possibilities of the FTIR spectrometers for the studies of crystallization, orientation, and relaxation phenomena in polymers are outlined. The experimental results on polyethylene films are discussed and related to changes in the state of order in the polymer films occurring during the stretching and relaxation process.With 5 figures  相似文献   

20.
This work describes the dielectric properties of piezoelectric poly(vinylidene fluoride) (PVDF) thin films in the frequency and temperature ranges relevant for usual applications. We measured the isothermal dielectric relaxation spectra of commercial piezoelectric PVDF thin films between 10 Hz to 10 MHz, at several temperatures from 278 K to 308 K. Measurements were made for samples in mechanically free and clamped conditions, in the direction of the poling field (perpendicular to the film). We found that the imaginary part of the dielectric relaxation spectra of free and clamped PVDF samples is dominated by a peak, above 100 kHz, that can be characterized by a Havriliak-Negami function. The characteristic time follows an Arrhenius dependence on temperature. Moreover, the spectra of the free PVDF samples show two additional peaks at low frequencies which are associated with mechanical relaxation processes. Our results are important for the characterization of piezoelectric PVDF, particularly after the stretching and poling processes in thin films, and for the design and characterization of a broad range of ultrasonic transducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号