首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m2/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins.  相似文献   

2.
A high-speed thermoresponsive medium was developed by grafting poly(N-isopropylacrylamide-co-butyl methacrylate) (P(NIPAM-co-BMA)) brushes onto gigaporous polystyrene (PS) microspheres via surface-initiated atom transfer radical polymerization (ATRP) technique, which has strong mechanical strength, good chemical stability and high mass transfer rate for biomacromolecules. The gigaporous structure, surface chemical composition, static protein adsorption, and thermoresponsive chromatographic properties of prepared medium (PS–P(NIPAM-co-BMA)) were characterized in detail. Results showed that the PS microspheres were successfully grafted with P(NIPAM-co-BMA) brushes and that the gigaporous structure was robustly maintained. After grafting, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. A column packed with PS–P(NIPAM-co-BMA) exhibited low backpressure and significant thermo-responsibility. By simply changing the column temperature, it was able to separate three model proteins at the mobile phase velocity up to 2167 cm h−1. In conclusion, the thermoresponsive polymer brushes grafted gigaporous PS microspheres prepared by ATRP are very promising in ‘green’ high-speed preparative protein chromatography.  相似文献   

3.
Zwitterionic and cationic polyelectrolyte brushes were prepared by surface-initiated atom transfer radical polymerization of 2-methacryloyloxy- ethyl phosphorylcholine (MPC) and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA), respectively. The poly(DMAEMA) brush was treated with methyl iodide to form poly[2-(methacryloyloxy) ethyltrimethylammonium iodide] [poly(METAI)]. The effects of ionic strength on brush structure and surface properties of densely grafted polyelectrolyte brushes were analyzed by contact angle measurements, neutron reflectivity (NR) and macroscopic friction tests. Both polyelectrolyte brushes exhibited hydrophilic properties. The contact angle of the poly(MPC) brush surface against water was ca. 0° in air and the contact angle of the air bubble in water was ca. 170°. The air bubble in water hardly attached to the poly(MPC) brush surface, indicating super hydrophilic characteristics. NR measurements of poly(MPC) and poly(METAI) brushes showed that the grafted polymer chains were extended from the substrate surface in a good solvent such as water. Interestingly, NR study did not reveal the shrinkage of the brush chain in salt solution. The polyelectrolyte brushes immersed in both water and NaCl solution at various concentrations showed a low friction coefficient and low adhesion force.  相似文献   

4.
《中国化学快报》2020,31(9):2516-2519
Pathogen infection is the main cause of human morbidity and death. Traditional antibiotics usually sterilize bacteria in chemical ways, which tends to develop serious antibiotic resistance. Cationic polymers exhibit good bacterial inhibition with less resistance, but often face severe cytotoxicity toward normal cells. The optimization of polymeric antimicrobials for enhanced bactericidal capacity and improved biocompatibility is quite meaningful. In addition, photodynamic therapy (PDT) is a therapeutic modality with less susceptibility to develop resistance. Herein, a typical commercial polymeric antimicrobial, polyhexamethylene guanidine (PHMG) was selected for current proof-of-concept optimization due to its excellent bactericidal capacity but moderate biocompatibility. Eosin-Y (EoS) was copolymerized to afford EoS-labeled polymer conjugates, poly(2-(dimethylamino) ethyl methacrylate-co-eosin), P(DMAEMA-co-EoS), which was conjugated with PHMG to afford a novel polymeric antimicrobial, P(DMAEMA-co-EoS)-b-PHMG-b-P(DMAEMA-co-EoS), noted as PEoS-PHMG. It could efficiently kill broad-spectrum bacteria by physical damage and photodynamic therapy. Compared with PHMG, the bacterial inhibition of PEoS-PHMG was potentiated after the functionalization. Furthermore, PEoS-PHMG exhibited low cytotoxicity and minimal hemolysis, which was demonstrated by cell viability assays toward LO2 cells and RAW 264.7 cells as well as hemolytic assays against red blood cells. These results confirmed that the resultant PEoS-PHMG could act as promising alternative antibacterial materials with excellent broad-spectrum bacterial inhibition and favorable biocompatibility.  相似文献   

5.
The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ~25-45 nm for polyHPMA and ~20-45 nm for polyHEMA can achieve almost zero protein adsorption (<0.3 ng/cm(2)) from single-protein solution and diluted human blood plasma and serum. For undiluted human blood serum and plasma, polyHEMA brushes at a film thickness of ~20-30 nm adsorb only ~3.0 and ~3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ~30 nm adsorb more proteins of ~13.5 and ~50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices.  相似文献   

6.
The immobilization of thiol-terminated poly[(methacrylic acid)-ran-(2-methacryloyloxyethyl phosphorylcholine)] (PMAMPC-SH) brushes on gold-coated surface plasmon resonance (SPR) chips was performed using the "grafting to" approach via self-assembly formation. The copolymer brushes provide both functionalizability and antifouling characteristics, desirable features mandatorily required for the development of an effective platform for probe immobilization in biosensing applications. The carboxyl groups from the methacrylic acid (MA) units were employed for attaching active biomolecules that can act as sensing probes for biospecific detection of target molecules, whereas the 2-methacryloyloxyethyl phosphorylcholine (MPC) units were introduced to suppress unwanted nonspecific adsorption. The detection efficiency of the biotin-immobilized PMAMPC brushes with the target molecule, avidin (AVD), was evaluated in blood plasma in comparison with the conventional 2D monolayer of 11-mercaptoundecanoic acid (MUA) and homopolymer brushes of poly(methacrylic acid) (PMA) also immobilized with biotin using the SPR technique. Copolymer brushes with 79 mol % MPC composition and a molecular weight of 49.3 kDa yielded the platform for probe immobilization with the best performance considering its high S/N ratio as compared with platforms based on MUA and PMA brushes. In addition, the detection limit for detecting AVD in blood plasma solution was found to be 1.5 nM (equivalent to 100 ng/mL). The results have demonstrated the potential for using these newly developed surface-attached PMAMPC brushes for probe immobilization and subsequent detection of designated target molecules in complex matrices such as blood plasma and clinical samples.  相似文献   

7.
A series of copolymers, poly(methylmethacrylate-co-2-methacryloyloxyethyl phosphorylcholine), with various compositions of methyl methacrylate (MMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were synthesized by radical copolymerization in a mixed solvent of ethanol and chloroform. The structures of the copolymers were confirmed by proton nuclear magnetic resonance and elemental analysis. The properties and morphologies of the copolymers were characterized by differential scanning calorimeter, scanning electron microscopy, and optical microscope. The adsorption of bovine serum albumin (BSA) and the adhesion of platelet on the surfaces of the copolymer membrane significantly decreased with increasing the MPC composition. The copolymers containing MPC above 18% showed excellent biocompatibility. Moreover, the relationship between the water structure and the biocompatibility was illustrated by changing quantity of the MPC in copolymers. The result showed that the amount of free water affected the platelet compatibility of the copolymer.  相似文献   

8.
郭文莉 《高分子科学》2013,31(2):285-293
To improve the hydrophilicity of poly(styrene-b-isobutylene-b-styrene) (SIBS), this study focuses on the synthesis of novel functional ABA triblock copolymer thermoplastic elastomers (TPEs) with polyisobutylene (PIB) as rubbery segments. The precursor poly{(styrene-co-4-[2-(tert-butyldimethylsiloxy) ethyl]styrene)-b-isobutylene-b-(styrene-co-4-[2-(tert-butyldimethylsiloxy)ethyl]styrene)}(P(St-co-TBDMES)-PIB-P(St-co-TBDMES)) triblock copolymer was first synthesized by living sequential cationic copolymerization of isobutylene (IB) with styrene (St) and 4-[2-(tert-butyldimethylsiloxy) ethyl]styrene (TBDMES) using 1,4-di(2-chloro-2-propyl)benzene (DiCumCl)/titanium tetrachloride (TiCl4)/2,6-di-tert-butylpyridine (DtBP) as the initiating system. Then, P(St-co-TBDMES)-PIB-P(St-co-TBDMES) was hydrolyzed in the presence of tetra-butylammonium fluoride to yield poly{[styrene-co-4-(2-hydroxyethyl)styrene]-bisobutylene-b-[styrene-co-4-(2-hydroxyethyl)styrene]} (P(St-co-HOES)-PIB-P(St-co-HOES)) with pendant hydroxyl groups. P(St-co-HOES)-PIB-P(St-co-HOES) used as the paclitaxel carrier was also investigated in this study. Comparing with SIBS, P(St-co-HOES)-PIB-P(St-co-HOES) has exhibited better compatibility with paclitaxel and higher release rate.  相似文献   

9.
The synthesis of stable dispersions of hybrid colloids comprising copolymers of biocompatible 2-hydroxyethyl methacrylate (HEMA) and zwitterionic, biomimetic 2-methacryloyloxyethyl phosphorylcholine (MPC) incorporating antibacterial AgBF(4) by inverse miniemulsion is described. The prepared hybrid colloids were designed to provide both antibacterial and antifouling properties for the formation of interesting, multifunctional films. The obtained particles had sizes in the range of 130-160 nm with two different weight ratios of MPC to HEMA (1:10 and 2:5) and AgBF(4) contents between 0% and 15%. The silver salt takes on the role of the lipophobe in stabilizing the miniemulsion droplets against Ostwald ripening and is reduced after polymerization to Ag nanoparticles by gaseous hydrazine. Subsequently, the hybrid particles are transformed into smooth and stable films with thicknesses between 145 and 225 nm by simple drop casting and solvent annealing. The dispersions and films were thoroughly characterized by DLS, TEM, SEM, EDX, TGA, UV-vis spectroscopy, ICP-OES, XRD, AFM, and contact angle measurements. After immersion into water, the films did not show detectable leakage of silver, so they could be employed as dual-functional antifouling and antibacterial coatings.  相似文献   

10.
In this study, the ability of Cupriavidus sp. USMAA2-4 to synthesize polyhydroxyalkanoates (PHA) containing 4-hydroxyvalerate monomer (4HV) was studied through one-stage cultivation using γ-valerolactone as the carbon precursor. The presence of 4HV monomer unit in the polymer was detected through gas chromatography analysis, proving the capability of this wild strain bacterium to produce poly(3-hydrxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [P(3HB-co-3HV-co-4HV)] terpolymer. Existence of a 4HV monomer unit in the PHA produced was further confirmed through 13C and 1H NMR analysis. P(3HB-co-88 % 3HV-co-1 % 4HV) terpolymer with the highest PHA content of 63 wt% was obtained through combination of 0.14 wt% C of γ-valerolactone with 0.42 wt% C of oleic acid. Various compositions of P(3HB-co-3HV-co-4HV) terpolymer with 3HV and 4HV compositions ranging from 11 to 94 mol% and from 1 to 4 mol%, respectively, were acquired by manipulating γ-valerolactone and oleic acid concentrations. The molecular weight and the thermal and mechanical properties of four different compositions of terpolymers—P(3HB-co-91 % 3HV-co-1 % 4HV), P(3HB-co-55 % 3HV-co-2 % 4HV), P(3HB-co-27 % 3HV-co-2 % 4HV), and P(3HB-co-9 % 3HV-co-1 % 4HV)—were characterized. Among these terpolymers, P(3HB-co-27 % 3HV-co-2 % 4HV) terpolymer with a molecular weight of 5.7 (105 Da) exhibited the highest elongation to break (264 %). The monomer unit compositional distributions of these terpolymers were investigated through acetone–water fractionation analysis. The results suggested that these produced terpolymers had broad 3HV compositional distribution and narrow 4HV compositional distribution.  相似文献   

11.
Thermoresponsive polymer brushes are grafted on micro/nanostructured polymer substrates as new intelligent interfaces that synergistically enhance wettability changes in response to external temperature stimuli. Thermoplastic poly(styrene‐co‐4‐vinylbenzyl chloride) [P(St‐co‐VBC)] is synthesized using radical polymerization and spin‐coated on a glass substrate. Micro/nanopillar and hole patterns are imprinted on the P(St‐co‐VBC) layer using thermal nanoimprint lithography. Poly(N‐isopropylacrylamide) (PIPAAm) brushes are grafted on the micro/nanostructured P(St‐co‐VBC) layer through surface‐initiated atom‐transfer radical polymerization using 4‐vinylbenzyl chloride as the initiator. The imprinted micro/nanostructures and grafted PIPAAm brush chain lengths affect the surface wettability. Combinations of nanopillars or nanoholes (diameter 500 nm) and longer PIPAAm brushes enhance hydrophobic/hydrophilic changes in response to temperature changes, compared with the flat substrate. The thermoresponsive hydrophobic/hydrophilic transition is synergistically enhanced by the nanostructured surface changing from Cassie–Baxter to Wenzel states. This PIPAAm‐brush‐modified micro/nanostructured P(St‐co‐VBC) is a new intelligent interface that effectively changes wettability in response to external temperature changes.

  相似文献   


12.
The optical transitions of three different size oligo(p-phenylenevinylene)-fullerene dyads (OPV(n)-MPC(60); n = 2-4) and of the corresponding separate molecules are studied using density functional theory (DFT) and time-dependent density functional theory. The DFT is used to determine the geometries and the electronic structures of the ground states. Transition energies and excited-state structures are obtained from the TDDFT calculations. Resonant energy transfer from OPV(n) to MPC(60) is also studied and the Fermi golden rule is used, along with two simple models to describe the electronic coupling to calculate the energy transfer rates. The hybrid-type PBE0 functional is used with a split-valence basis set augmented with a polarization function (SV(P)) in calculations and the calculated results are compared to the corresponding experimental results. The calculated PBE0 spectra of the OPV(n)-MPC(60) dyads correspond to the experimental spectra very well and are approximately sums of the absorption spectra of the separate OPV(n) and MPC(60) molecules. Also, the absorption energies of OPV(n) and MPC(60) and the emission energies of OPV(n) are predicted well with the PBE0 functional. The PBE0 calculated resonant energy transfer rates are in a good agreement with the experimental rates and show the existence of many possible pathways for energy transfer from the first excited singlet states of the OPV(n) molecules to the MPC(60) molecule.  相似文献   

13.
The hairy poly(methacrylic acid‐co‐divinylbenzene)‐g‐poly(N‐isopropylacrylamide) (P(MAA‐co‐DVB)‐g‐PNIPAm) nanocapsules with pH‐responsive P(MAA‐co‐DVB) inner shell and temperature‐responsive PNIPAm brushes were prepared by combined distillation–precipitation copolymerization and surface thiol‐ene click grafting reaction using 3‐(trimethoxysilyl)propyl methacrylate‐modified silica (SiO2‐MPS) nanospheres as a sacrificial core material. The well‐defined PNIPAm was synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization. The chain end was converted to a thiol by chemical reduction. The PNIPAm was integrated into the nanocapsules via thiol‐ene click reaction. The surface thiol‐ene click reaction conduced to tunable grafting density of PNIPAm brushes. The grafting densities decreased from 0.70 chains nm?2 to 0.15 chains nm?2 with increasing the molecular weight of grafted PNIPAm chains. Using water soluble doxorubicin hydrochloride (DOX·HCl) as a model molecular, the tunable shell permeability of the nanocapsule was investigated in detail. The permeability constant can be tuned by controlling the thickness of the P(MAA‐co‐DVB) inner shell, the grafting density of PNIPAm brushes, and the environmental pH and temperature. The tunable shell permeability of these nanocapsules results in the release of the loaded guest molecules with manipulable releasing kinetics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2202–2216  相似文献   

14.
Unlike polyhydroxyalkanoates (PHAs) copolymers, the controlled and efficient synthesis of PHA terpolymers from triglycerides and fatty acids are yet to be established. This study demonstrates the production of P(3HB-co-3HV-co-3HHx) terpolymer with a wide range of 3HV monomer compositions from mixtures of crude palm kernel oil and 3HV precursors using a mutant Cupriavidus necator PHB4 transformant harboring the PHA synthase gene (phaC) of a locally isolated Chromobacterium sp. USM2. The PHA synthase of Chromobacterium has an unusually high affinity towards 3HV monomer. P(3HB-co-3HV-co-3HHx) terpolymers with 3HV monomer composition ranging from 2 to 91 mol% were produced. Generation of 3HHx monomers was affected by the concentration and feeding time of 3HV precursor. P(3HB-co-24 mol% 3HV-co-7 mol% 3HHx) exhibited mechanical properties similar to that of common low-density polyethylene. P(3HB-co-3HV-co-3HHx) terpolymers with a wide range of 3HV molar fraction had been successfully synthesized by adding lower concentrations of 3HV precursors and using a PHA synthase with high affinity towards 3HV monomer.  相似文献   

15.
The two types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s [P(3HB-co-3HV)s] were produced by Paracoccus denitrificans ATCC 17741 using two different feeding methods. The produced P(3HB-co-3HV)s were fractionated and the copolymer sequence distributions were analyzed by 1H and 13C NMR spectroscopy. It was found that the P(3HB-co-3HV) samples produced by conventional feeding method were statistically random copolymers. The sequence distributions of P(3HB-co-3HV) samples produced by optimization method were different from random P(3HB-co-3HV)s. The thermal properties and melting behaviors were analyzed by differential scanning calorimetry (DSC). These results demonstrated that P(3HB-co-3HV) samples produced by optimization method are close in nature to P(3HB-co-3HV)s rich in long-sequence of block 3HB units, but less in 3HV random regions. The enzymatic degradation profile of P(3HB-co-3HV) films was investigated in the presence of 3-hydroxybutyrate depolymerase from Pseudomonase lemoignei. The degradation process was observed by monitoring the time-dependent change in the weight loss of copolymer films. The surface erosion of copolymer films was qualitatively monitored by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest degradation rate of 2.6% per day was observed for random P(3HB-co-38%3HV) produced by conventional method. In comparison, the hydrolysis degradation rates of random P(3HB-co-3HV)s were about one time faster than those of P(3HB-co-3HV)s produced by optimization method.  相似文献   

16.
Development of advanced functional materials from naturally abundant polymers such as cellulose are of significant importance. Of particular interest is embedding antibacterial functionality to cellulose materials to make permanent antibacterial materials and devices. In the present research, a “clickable” quaternary ammonium compound, N-(2-ethoxy-2-oxoethyl)-N,N-dimethylprop-2yn-1-aminium bromide (EdMPABr) was synthesized via a simple reaction with nearly stoichiometric yield and well characterized with 1D (1H, 13C) and 2D (COSY, HSQC) NMR and ATR-FTIR. EdMPABr can be covalently bonded to many molecules containing an azido group to form non-leaching antibacterial materials via the simple Cu(I)-catalyzed alkyne-azide [2 + 3] cycloaddition reaction. As an example, EdMPABr was attached to our previously reported 3-O-azidopropoxypoly(ethylene glycol)-2,6-di-O-thexyldimethylsilyl cellulose (3-N3PEG-2,6-TDMS cellulose, DS = 0.54 at C3 determined by 1H NMR). Significant antibacterial activity of the synthesized 3-O-quaternary ammonium-2,6-di-O-thexyldimethylsilyl cellulose (3-QA-2,6-TDMS cellulose, DS = 0.30 at C3 determined by using N content from elemental analysis) was confirmed by testing against the representative bacteria Escherichia coli. By linking the EdMPABr to the honeycomb film of 3-N3PEG-2,6-TDMS cellulose, the formed honeycomb film exhibited both antibacterial and antifouling properties. This research provides a simple and robust route towards the development of permanent antibacterial materials and biomedical devices.  相似文献   

17.
This paper investigates the degradation of polyhydroxyalkanoates and its biofiber composites in both soil and lake environment. Time-dependent changes in the weight loss of films were monitored. The rate of degradation of poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-23?mol% 4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-9?mol% 3HV-co-19?mol% 4HB)] were investigated. The rate of degradation in the lake is higher compared to that in the soil. The highest rate of degradation in lake environment (15.6?% w/w week?1) was observed with P(3HB-co-3HV-co-4HB) terpolymer. Additionally, the rate of degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-38?mol% 3HV)] was compared to PHBV biofiber composites containing compatibilizers and empty fruit bunch (EFB). Here, composites with 30?% EFB displayed the highest rate of degradation both in the lake (25.6?% w/w week?1) and soil (15.6?% w/w week?1) environment.  相似文献   

18.
Highly swelling P(2-acrylamido-2-methyl-1-propanesulfonic acid- co-acrylic acid) (P(AMPS-co-AAc)) superabsorbent hydrogel was synthesized in aqueous solution by a simple one-step using glow-discharge electrolysis plasma technique, in which N,N’-methylenebisacrylamide was used as a crosslinking agent. The structure, thermal stability and morphology of P(AMPS-co-AAc) superabsorbent hydrogel were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. A mechanism for synthesis of P(AMPS-co-AAc) superabsorbent hydrogel was proposed. The reaction parameters affecting the equilibrium swelling (i.e., discharge voltage, discharge time, macroscopic temperature of the liquid phase, mass ratio of AMPS to AAc, and content of crosslinker) were systematically optimized to achieve a superabsorbent hydrogel with a maximum swelling capacity. The hydrogel formed which absorbed about 1,685 g H2O/g dry hydrogel of the optimized product was used to study the influence of various pH values and salts solutions (NaCl, KCl, MgCl2, and CaCl2) on the equilibrium swelling. In addition, swelling kinetics in distilled water and on–off switching behavior were preliminarily investigated. The results showed that superabsorbent hydrogel was responsive to the pH and salts.  相似文献   

19.
The complex [Pd(κ2P,O‐{2‐(2‐MeOC6H4)2P}C6H4SO3)Me(dmso)] ( 1 ) is investigated for the copolymerization of (E) with norbornene (N) and functionalized N derivatives affording P(E‐co‐N) in excellent yields. Copolymer molar masses are higher than those of PE and increase with N concentration. In addition, the complex [Ti(κ2N,O‐{2,6‐F2C6H3N = C(Me)C(H) = C(CF3)O})2Cl2] ( 2 ) is evaluated as catalyst for living E‐co‐N copolymerization upon activation with dried methylaluminoxane between 25 and 90 °C. Copolymerization at different [N]/[E] feed ratios affords stereoirregular alternating high molar mass P(E‐co‐N) with narrow molar mass distribution. P(E‐co‐N) living copolymerization is demonstrated by kinetics at 50 °C. Block copolymers are synthesized and fully characterized.

  相似文献   


20.
Poly(4-vinylpyridine) (P4VP) brushes were grafted onto microporous polysulfone (PSF) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and then immobilized copper (II) ions on the modified membrane. Copper-loaded membranes exhibited excellent antibacterial properties with the added advantage of repeated use. The chemical composition and surface morphology of the functionalized membrane was characterized by ATR-FTIR, XPS, SEM, and AFM. The results showed that P4VP brushes clustered to rod-shaped covering and the sub-layer of membrane maintained sponge-like structures at the same time. Additionally, the kinetic study of SI-ATRP reaction revealed that the chain length of P4VP brushes increased linearly as the polymerization time increased. The antibacterial effects of copper-loaded CMPSF-g-P4VP membrane against Escherichiacoli were examined and the antibacterial efficiency reached 100% when 2.49wt.% of copper (II) ions was immobilized on membrane. The presented results could serve as a good starting point for the fabrication of antibacterial CMPSF membranes for waste-water treatment applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号