首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polymerization of ethylene was initiated by low-pressure glow plasma generated in this gas. Depending on starch present in this plasma polymerization could be considered either as graft-polymerization of ethylene onto starch or homopolymerization. Result of the treatment of cassava, corn, potato, rice Indica, sweet potato, and waxy corn starches with ethylene plasma was analyzed by means of high-performance size exclusion chromatography, X-ray powder diffraction, thermogravimetry, digestion with β-amylase, and scanning electron microscopy. Analyses suggested that graft-polymerization occurred on sweet potato and rice starch. With other starches homopolymerization of ethylene on granules took place.  相似文献   

2.
Cassava, potato, sweet potato, and Peruvian carrot starches were hydrolyzed with 15% v/v sulfuric acid solution for up to 30 days. Näegeli dextrins obtained from 1, 3, 6, 12, and 30 days were evaluated using differential scanning calorimeter (DSC) and scanning electron microscopy (SEM). Two phases of hydrolysis were found. The first phase was attributed to faster degradation of amorphous areas of granules, whereas the second phase corresponded to slower degradation of crystalline regions. Peruvian carrot starch was the most susceptible to acid, whereas potato and sweet potato starches were the most resistant. From DSC, it was observed a progressive reduction in peak height and a broadening of peaks with increasing hydrolysis time. The peaks shifted to higher temperatures. Onset temperature decreased on first day of hydrolysis for cassava and Peruvian carrot starches, and on third day for potato and sweet potato. Enthalpy decreased during first stage of hydrolysis in cassava and Peruvian carrot starches, and during second phase, it reduced in all starches. SEM showed that the granule surfaces were degraded by erosion on the first day of treatment, followed by degradation of amorphous areas. On third day, potato and sweet potato starches still displayed some granules almost intact, whereas cassava and Peruvian carrot starch granules were totally degraded, confirming their high susceptibility to acid attack. On sixth day of hydrolysis, starch granules had faceted structures, characteristic of crystalline material. The effect that acid hydrolysis had on thermal properties of starches depended on both hydrolysis stage and starch source.  相似文献   

3.
The effects of black tea polyphenol extract (BTPE) on the retrogradation of starches from different plant sources were studied using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). DSC analysis shows that the gelatinization temperature of maize starch and starches from different rice varieties increased with increasing BTPE level. After storage at 4 °C, BTPE at a concentration of 15% markedly retarded the retrogradation of maize starch and starches from different rice varieties. Native maize starch and starches from different rice varieties showed typical A-type X-ray diffraction patterns, while native potato starch showed a typical B-type X-ray diffraction pattern. Adding BTPE significantly affected the crystalline region and intensities of X-ray diffraction peaks of maize and rice starch granules. It is concluded that adding BTPE markedly inhibits the retrogradation of maize starch and starches from different rice varieties, but has no significant influence on the gelatinization and retrogradation characteristics of potato starch.  相似文献   

4.
In this study, we investigated the differences in the crystallinity of starch films (mung bean, water chestnut, sweet potato, and cassava starches) with different moisture contents stored in different humidity conditions (11%, 22%, 33%, 43%, 54%, 75%, and 84%) and evaluated their thermal adhesion and sealing properties. X-ray diffraction analysis revealed an association between the degree of crystallinity and the moisture content in starch films: crystallinity decreased with an increase in the moisture content. Field Emission Scanning Electron Microscopy (FE-SEM) analysis showed that films with low moisture content failed to completely adhere, but films with a high moisture content and lower crystallinity showed good adherence, with two films perfectly adhered at the same temperature because water molecules acted as a mobility enhancer. The peeling test demonstrated the failure modes of the heat-bound films. The cassava starch film, which had a low amylose content and crystallinity, showed better adhesion compared to other starch films.  相似文献   

5.
The study addressed starch-based coatings on paper and fabrics. Coated materials and free starch films containing different amounts of a well-established plasticizer (glycerol) or potential plasticizer (mainly polyols) were tested with respect to water vapour permeance (WVPe), water vapour permeability (WVP), glass transition temperature (Tg), and mechanical strength (tensile tests). Both normal and high- amylose potato starch were used. These starches were modified by (a) oxidation, (b) oxidation and hydroxypropylation or (c) oxidation and hydrophobically modified by reaction with octenyl- or alkenyl-substituted succinic acid anhydride. Free films of hydroxypropylated high-amylose potato starch showed a lower WVP than did the corresponding starches based on regular potato starch. The WVP of the hydrophobically modified regular potato starches was substantially higher than that of films of the corresponding hydroxypropylated starches. The expected hydrophobic effect of the succinic acid anhydrides in terms of a reduced WVP could not be observed. When glycerol was used as a plasticizer, about 30 parts (by wt.) per hundred parts of starch were needed in order to reduce the Tg and to cause observable changes in the mechanical properties of the free films.  相似文献   

6.
Kinetic regularities of flocculation of model kaolin suspensions by highly substituted cationic flocculants synthesized from different starches (corn, waxy corn, potato, and tapioca starches) have been studied as depending on the doses and vegetable origins of the flocculants. The rate of kaolin suspension flocculation has been found to increase with the dose of the cationic starches of all types. It has been shown that, irrespective of the dose, the highest rate of kaolin sedimentation in the model systems is observed in the presence of cationic potato starch. It has been demonstrated that cationic potato starch flocculates kaolin suspensions with concentrations of 0.1, 0.5, and 1.0% with the same efficiency. In this case, the suspensions are almost completely clarified within 2–5 min. Moreover, the dependence of the flocculating efficiency for a 0.1% model suspension on the dose of cationic starch has been found to pass through a maximum at a starch content of 1.0–5.0 mg/g of kaolin depending on the type of starch.  相似文献   

7.
Cyclodextrins (CDs) are cyclic oligasaccharides composed by d-glucose monomers joined by α-1,4-d glicosidic linkages. The main types of CDs are α-, β- and γ-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches (commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a β-CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0:0.89:0.11 for α/β/γ. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.  相似文献   

8.
Determination of the characteristics of native starches is crucial in order to select their best application in various industrial fields. Thus, two different types of non-traditional native starches from the Dioscoreaceas species (Dioscorea sp. and Dioscorea piperifolia Humb. var. Wild) were studied regarding their thermal, structural and rheological properties. The results were contrasted with traditional commercial starch sources (potato, cassava and corn). From the thermogravimetric results (TG/DTG), D. piperifolia starch obtained the highest thermal stability of the samples, except for potato starch. Furthermore, using differential scanning calorimetry and viscoamylograph profiles (RVA), it was found that the Dioscoreaceas starches presented a higher onset (T o) temperature and susceptibility to retrogradation. They also showed lower values in relation to relative crystallinity, which was calculated from their X-ray patterns and tendency to white (L*) colour. The shapes of the Discoreaceas starch granules were determined using electron microscopy; it was found that as the potato starch the Dioscoreaceas starches showed a wide range of particle size.  相似文献   

9.
Sweet potato is a root tuber crop and an important starch source. There are hundreds of sweet potato varieties planted widely in the world. Starches from varieties with different genotype types and originating from different countries have not been compared for their physicochemical properties. In the research, starches from 44 sweet potato varieties originating from 15 countries but planted in the same growing conditions were investigated for their physicochemical properties to reveal the similarities and differences in varieties. The results showed that the 44 starches had granule size (D[4,3]) from 8.01 to 15.30 μm. Starches had different iodine absorption properties with OD680 from 0.259 to 0.382 and OD620/550 from 1.142 to 1.237. The 44 starches had apparent amylose content from 19.2% to 29.2% and true amylose content from 14.2% to 20.2%. The starches exhibited A-, CA-, CC-, or CB-type X-ray diffraction patterns. The thermograms of 44 starches exhibited one-, two-, or three-peak curves, leading to a significantly different gelatinization temperature range from 13.1 to 29.2 °C. The significantly different starch properties divide the 44 sweet potato varieties into different groups due to their different genotype backgrounds. The research offers references for the utilization of sweet potato germplasm.  相似文献   

10.
The branching (α-1,4)/(α-1,6) ratio of starch from a number of sources can be quickly and accurately determined by proton nuclear magnetic resonance (NMR). This NMR ratio, with standard ratios for isolated amylose and amylopectin, can then be used to determine the amylose/amylopectin content of starches. In the course of determining the amylose/amylopectin content of various starches, it was discovered that two different types of amylopectin standards were required to obtain results comparable to those obtained from iodine-binding amylose determinations. These two types were a waxy amylopectin, with a high level of branching, and a potato amylopectin, with a lower level of branching. A third type of amylopectin, with a still lower level of branching, is apparently present in high amylose cornstarches, leading to the conclusion that starches with higher amylose contents generally contain amylopectin with a lower level of branching. The three amylopectin types are referred to as amylopectin I, II and III, with the higher numeral coinciding with higher branching (α-1,4)/(α-1,6) ratio, or less branching.  相似文献   

11.
In this work, acetone–butanol–ethanol (ABE) fermentation characteristics of cassava starch and cassava chips when using Clostridium saccharoperbutylacetonicum N1-4 was presented. The obtained results in batch mode using a 1-L fermenter showed that C. saccharoperbutylacetonicum N1-4 was a hyperamylolytic strain and capable of producing solvents efficiently from cassava starch and cassava chips, which was comparable to when glucose was used. Batch fermentation of cassava starch and cassava chips resulted in 21.0 and 19.4 g/L of total solvent as compared with 24.2 g/L of total solvent when using glucose. Solvent productivity in fermentation of cassava starch was from 42% to 63% higher than that obtained in fermentation using corn and sago starches in the same condition. In fermentation of cassava starch and cassava chips, maximum butanol concentration was 16.9 and 15.5 g/L, respectively. Solvent yield and butanol yield (based on potential glucose) was 0.33 and 0.41, respectively, for fermentation of cassava starch and 0.30 and 0.38, respectively for fermentation using cassava chips.  相似文献   

12.
13.
Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm?1, assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method.
Figure
Raman spectroscopy has been successfully applied to the determination of the amylose content in cassava and corn starches by means of multivariate calibration analysis.  相似文献   

14.
The present study investigated the structure, degradation properties, and combustion behavior of starch from maize, sweet potato, lotus root, and tobacco. Compared with other plant starches, tobacco starch had the smallest size, the highest amylose content and the least crystallinity. Microscale combustion calorimetry (MCC) experiment demonstrated that sweet potato starch showed the maximum peak heat release rate value (888.0 W g?1) while tobacco starch showed the minimum value (316.0 W g?1) and thermogravimetric analysis coupled with Fourier transform infrared spectrometer (TG-FTIR) results showed tobacco starch had good char formability (residue mass: 15.6%) and released more incombustible gaseous products, such as H2O and CO2. These results suggest that the thermal properties of plant starches were mainly influenced by the structural features and amylose content, especially the amylose ratio, and tobacco starch was very promising for application in green flame-retardant material.  相似文献   

15.
Proton and deuterium pulsed Nuclear Magnetic Resonance (NMR) techniques were employed to investigate the hydration properties of raw and cooked (steamed, oven baked and microwave baked) waxy (LaSoda and Pontiac) and mealy (Russet Burbank and Norchip) potato cultivars and starches. Three water components (T2Q internal, T2A medium and T2B long component) were resolved in potato cultivars and starches. The first water component T2Q is assigned to the anisotropically bound water within the potato starch granule structure. The T2A corresponds to trapped water, whereas, the T2B-long component is assigned to the average between weakly bound and free water populations. The anisotropically bound water (T2Q internal) in potato cultivars and starches does not seem to be in fast chemical exchange with free and weakly bound water populations. Well defined powder patterns with a residual deuterium quadrupole splitting of about 1 kHz were observed at 22°C for raw potato cultivars and starches (17%, w/w). The quadrupole splitting, however, disappeared after cooking as a result of heat induced structural changes, and only rapidly, isotropically reorienting water remained. The T2A and T2B values were also significantly affected by the cooking method. The T2B values of cooked potatoes were shorter than those of raw potatoes. Heat induced structural changes were reflected in the shorter T2B value of the cooked and crushed potatoes. Lower average 1H NMR transverse relaxation rates were observed in cooked waxy (LaSoda) in comparison with those of other potatoes.  相似文献   

16.
Potato starch is one of the most important renewable sources for industrial manufacturing of organic compounds. Currently, it is produced from mixed potato varieties that often are harvested from different fields. Meanwhile, tuber starches of various potato breeds differ in their crystallinity, granule morphology, and other physical and chemical parameters. We studied the reactions of raw potato starches of different origins to chemical and biochemical reactions typically used for industrial starch modification. The results clearly demonstrate that there is a significant difference in the reactivity of the starches of different potato genotypes. While the main products of the transformations are the same, their preparative yields differ significantly. Thus, tuber starch of certain potato varieties may be more suitable for specific industrial purposes. Starch reactivity may potentially be a phenotypical trait for potato breeding to obtain potato starches for various industrial applications.  相似文献   

17.
Tapioca and potato starches were used to investigate the effect of heat–moisture treatment (HMT; 95–96 °C, 0–60 min, 1–6 iterations) on gelatinization properties, swelling power (SP), solubility and pasting properties. Tapioca starch had similar content and degree of polymerization of amylose, but a higher amylopectin short/long chain ratio, to potato starch. After HMT, the gelatinization temperature range was narrowed for tapioca starch, but was widened for potato starch. Decreases in SP and solubility were less for tapioca than potato starches, coinciding with a progressive shift to the moderate-swelling pasting profile for tapioca but a drastic change to the restricted-swelling profile for potato. Moreover, decreasing extents of SP and maximum viscosity for HMT tapioca starch were, respectively, in the range of 47–63% and 0–36%, and those of HMT potato starch were 89–92% and 63–94%. These findings indicate that the granule expansion and viscosity change of starch during gelatinization can be tailored stepwise by altering the HMT holding time and iteration.  相似文献   

18.
New reactive unsaturated starch derivatives, 1‐allyloxy‐2‐hydroxy‐propyl‐starches (AHP‐starches), were synthesized by the reaction of waxy maize starch (WMS) and amylose‐enriched maize starch (AEMS) with allyl glycidyl ether in a heterogeneous alkaline suspension containing NaOH and Na2SO4. The degree of substitution (DS) was determined by 1H NMR spectroscopy, and a DS of 0.20 ± 0.01 was found for both AHP‐WMS and AHP‐AEMS, respectively. The AHP derivatives of WMS and AEMS were further characterized with 1H and 13C NMR. It was shown that the AHP substitution was located on the C‐6 hydroxyl group of the glucose residues in the starch. The substitution pattern of the AHP groups along the polymer chain was randomly clustered, as determined by enzymatic digestion using pullulanase, α‐amylase, and amyloglucosidase, followed by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the digestion products. With X‐ray diffraction and scanning electron microscopy, no changes in the granular morphology and crystallinity between the unmodified starches and AHP‐starches were detected. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2734–2744, 2007  相似文献   

19.
In the present study, isothermal microcalorimetry was introduced as a tool to investigate properties of starch retrogradation during the first 24 h. The study was made on purified amylose and amylopectin from corn, as well as on native starches, such as wheat, potato, maize, waxy maize and amylomaize, differing in their amylose content. The results were obtained in the form ofP-t traces (thermal powervs. time), and integration of these traces gave a net exothermic enthalpy of reaction, caused by the crystallization of amylose and amylopectin. TheP-t traces reflected the quantities of amylose and amylopectin in the starch studied. Depending on the amylose content and the botanical source of the starch, the rate of crystallization of amylose was high and predominated over that of amylopectin during the first 5–10 h. The contribution from amylose crystallization to the measured exothermic enthalpy was very substantial during this period. After 10 h, amylose crystallized at a lower constant rate. During the first 24 h, amylopectin crystallized at a low steady rate. The exothermic enthalpies obtained by the isothermal microcalorimetric investigations during the first 24 h of retrogradation were generally low in relation to the endothermic melting enthalpies observed by differential scanning calorimetry (DSC) measurements after 24 h of storage. The discrepancies in enthalpy values between the two methods are discussed in relation to phase separation and the endothermic effects owing to the decrease in polymer-water interactions when polymer-rich regions in the starch gel separate. Besides the exothermic enthalpies obtained, theP-t traces also made it possible to study the initial gelation properties of amylose from different botanical sources. The present study further demonstrated that isothermal microcalorimetry can provide a possible way to investigate the antistaling effect of certain polar lipids, such as sodium dodecylsulphate (SDS) and 1-monolauroyl-rac-glycerol (GML), when added to starches of different botanical origin. The net exothermic heat of reaction for starch retrogradation during the first 24 h was decreased when GML or SDS was added to the starch gels. The recordedP-t traces also showed how the effect of the added lipid influenced different periods during the first 24 h of starch retrogradation, and that the effect depended mainly on the amylose content, the botanical source of the starch, and the type of lipid used. When GML or SDS was added to waxy maize, the isothermal microcalorimetric studies clearly indicated some interaction between amylopectin and the polar lipids. These results concerning the action of anti-staling agents are further discussed in relation to the helical inclusion complexes formed between amylose-polar lipid and amylopectin-polar lipid.The authors thank Eva Qvarnström at the Dept. of Thermochemistry and Eva Tjerneld at the Dept. of Food Technology for valuable practical assistance. Financial support was obtained from the Swedish Council for Forestry and Agricultural Research (SJFR) and the Swedish Farmer's Foundation for Agricultural Research (Stiftelsen Lantbruksforskning).  相似文献   

20.
《Analytical letters》2012,45(15):3049-3058
ABSTRACT

Waxy (essentially amylose-free) maize starch was chemically modified to varying degrees by treatment with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CHPTAC), and the degree of cationic modification was determined by a standard wet chemistry method. FT-Raman spectra of the modified starches were taken, and a characteristic Raman band ~761 cm?1 was found. This 761 cm?1 Raman band's intensity depended on the level of cationic modification of the starch. The ratio of intensity of the ~761 cm?1 band to a ~715 cm?1 C-C stretch Raman band (used as an internal standard) was plotted versus the amount of cationic modification derived by titration analysis, and a linear fit was obtained with a correlation of 0.998. The FT-Raman spectroscopy method presented here demonstrates a rapid non-destructive way to determine the level of cationic modification of waxy maize starch, and should be suitable for use with cationic modified starches of any amylose content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号